A flexible humidity-resistant nanofiber-based triboelectric nanogenerator with high electrical output stability as self-powered sensors for motion monitoring

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yue Sun, Zicheng Qian, Yuna Wang, Yaping Li, Yide Zheng, Yong Liu
{"title":"A flexible humidity-resistant nanofiber-based triboelectric nanogenerator with high electrical output stability as self-powered sensors for motion monitoring","authors":"Yue Sun, Zicheng Qian, Yuna Wang, Yaping Li, Yide Zheng, Yong Liu","doi":"10.1016/j.cej.2025.159845","DOIUrl":null,"url":null,"abstract":"Triboelectric nanogenerators (TENGs) have been widely used to harvest irregular mechanical energy generated by human activities to power low-power wearable electronic devices due to their excellent electrical output performance, simple structure, high portability, and low cost. However, ambient humidity can significantly affect the surface charges of triboelectric materials and the electrical output stability of TENGs, which greatly limits their application. Herein, we designed a flexible humidity-resistant TENG with excellent electrical output stability based on zinc oxide nanorods@polyacrylonitrile (ZnO@PAN) nanofiber membrane modified with 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (POTS). ZnO nanorods and POTS modification enhanced surface friction and the electrical output performance of the TENG in high humidity environments. The power density of as-prepared TENG reached 270.6 μW/cm<sup>2</sup> at the load resistance of 3.5 MΩ. Moreover, compared with the ZnO@PAN-based TENG, this humidity-resistant TENG showed lower electrical loss and shorter recovery time in the humidified state. It also exhibited excellent electrical output stability under the influence of continuous humidification. The pulse electrical signal generated by this humidity-resistant TENG could intermittently light up 54 LEDs at a relative humidity of 80 %. Furthermore, the POTS/ZnO@PAN-PDMS TENG was used as a self-powered sensor for motion monitoring and haptic sensing in an environment with a relative humidity of 70 %, which exhibits good electromechanical conversion performance and motion monitoring capability in high humidity environments, greatly broadening the application range of TENGs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"119 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.159845","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric nanogenerators (TENGs) have been widely used to harvest irregular mechanical energy generated by human activities to power low-power wearable electronic devices due to their excellent electrical output performance, simple structure, high portability, and low cost. However, ambient humidity can significantly affect the surface charges of triboelectric materials and the electrical output stability of TENGs, which greatly limits their application. Herein, we designed a flexible humidity-resistant TENG with excellent electrical output stability based on zinc oxide nanorods@polyacrylonitrile (ZnO@PAN) nanofiber membrane modified with 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (POTS). ZnO nanorods and POTS modification enhanced surface friction and the electrical output performance of the TENG in high humidity environments. The power density of as-prepared TENG reached 270.6 μW/cm2 at the load resistance of 3.5 MΩ. Moreover, compared with the ZnO@PAN-based TENG, this humidity-resistant TENG showed lower electrical loss and shorter recovery time in the humidified state. It also exhibited excellent electrical output stability under the influence of continuous humidification. The pulse electrical signal generated by this humidity-resistant TENG could intermittently light up 54 LEDs at a relative humidity of 80 %. Furthermore, the POTS/ZnO@PAN-PDMS TENG was used as a self-powered sensor for motion monitoring and haptic sensing in an environment with a relative humidity of 70 %, which exhibits good electromechanical conversion performance and motion monitoring capability in high humidity environments, greatly broadening the application range of TENGs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信