Keaoleboga Mosupi, Mike Masukume, Guoming Weng, Nicholas M. Musyoka, Henrietta W. Langmi
{"title":"Recent advances in Fe-based metal-organic frameworks: Structural features, synthetic strategies and applications","authors":"Keaoleboga Mosupi, Mike Masukume, Guoming Weng, Nicholas M. Musyoka, Henrietta W. Langmi","doi":"10.1016/j.ccr.2025.216467","DOIUrl":null,"url":null,"abstract":"Metal organic frameworks (MOFs) are very exciting porous materials owing to their unique properties such as high surface areas, high pore volume, tunable functionalities and great thermal stabilities. The properties of MOFs can be diversely constructed by precise control of synthesis conditions. Amongst the thousands of MOFs that have been discovered to date, Fe-MOFs make up a percentage of these MOFs. Fe-MOFs are increasingly gaining great interest due to their unique properties and chemical versatility. However, comprehensive reviews on their emerging architectural features and designs as well as strategies for tailoring their applications. Therefore, in this review, we present a panoptic summary of the recent developments of Fe-MOFs, which includes synthetic strategies, activation methods, functionalization, overview of selected applications, current challenges impeding their commercialization, and suggested remedial actions. A holistic view of the interconnectedness of Fe-MOFs structural features, synthetic strategies and applications provides greater insights that highlight challenges hindering their wide-scale industrial applications. Moreover, newer approaches such as utilization of machine learning technique that are providing an opportunity for out-of-sight insights for material design and prediction of material properties are briefly highlighted. Remedial actions for challenges of transitioning Fe-based MOFs towards commercialization and industrial applications are also explored, and suggestions for these aspects are presented.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"35 1","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ccr.2025.216467","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Metal organic frameworks (MOFs) are very exciting porous materials owing to their unique properties such as high surface areas, high pore volume, tunable functionalities and great thermal stabilities. The properties of MOFs can be diversely constructed by precise control of synthesis conditions. Amongst the thousands of MOFs that have been discovered to date, Fe-MOFs make up a percentage of these MOFs. Fe-MOFs are increasingly gaining great interest due to their unique properties and chemical versatility. However, comprehensive reviews on their emerging architectural features and designs as well as strategies for tailoring their applications. Therefore, in this review, we present a panoptic summary of the recent developments of Fe-MOFs, which includes synthetic strategies, activation methods, functionalization, overview of selected applications, current challenges impeding their commercialization, and suggested remedial actions. A holistic view of the interconnectedness of Fe-MOFs structural features, synthetic strategies and applications provides greater insights that highlight challenges hindering their wide-scale industrial applications. Moreover, newer approaches such as utilization of machine learning technique that are providing an opportunity for out-of-sight insights for material design and prediction of material properties are briefly highlighted. Remedial actions for challenges of transitioning Fe-based MOFs towards commercialization and industrial applications are also explored, and suggestions for these aspects are presented.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.