Sodium metal anodes with multiphasic interphases for room temperature sodium–sulfur pouch cells†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chhail Bihari Soni, Sidhant Kumar Barik, S. K. Vineeth, Bhupendra Yadav, Mahesh Chandra, Sungjemmenla, Sanjaykumar C, Hemant Kumar and Vipin Kumar
{"title":"Sodium metal anodes with multiphasic interphases for room temperature sodium–sulfur pouch cells†","authors":"Chhail Bihari Soni, Sidhant Kumar Barik, S. K. Vineeth, Bhupendra Yadav, Mahesh Chandra, Sungjemmenla, Sanjaykumar C, Hemant Kumar and Vipin Kumar","doi":"10.1039/D4TA08118H","DOIUrl":null,"url":null,"abstract":"<p >The SEI is pivotal for the reversibility of RT-Na/S batteries. The performance of RT-Na/S batteries critically depends on the solid electrolyte interphase's (SEI) mechanical and ionic transport properties. An ideal SEI is sufficiently stiff yet ductile and supports ionic diffusion to minimize the dendrite formation. In the present study, we report the design of a multiphasic SEI comprising NaF, NaI, and NaNH<small><sub>2</sub></small> to suppress the dendrite growth. An optimized amount of the novel organic additive, <em>i.e.</em>, CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>I, helps facilitate the formation of the desired SEI. Density Functional Theory (DFT) calculations reveal that the chemical composition effectively balances the electro-mechanical attributes of the SEI, <em>i.e.</em>, a high stiffness (≈66 GPa) while maintaining a desired critical strain (≈40%). Besides this, the major chemical constituents of the SEI facilitate fast ion kinetics due to the low energy barriers associated with NaNH<small><sub>2</sub></small> and NaI (≈0.26 eV and ≈0.5 eV, respectively). This multiphasic SEI enables reversible sodium plating and stripping for an unprecedented time of over 3200 hours. The uniqueness of the multiphasic SEI becomes apparent when demonstrated in the coin and pouch format of the RT-Na/S battery, maintaining a stable operation for over 500 cycles with an initial discharge capacity of ∼700 mA h g<small><sup>−1</sup></small>. These findings underscore the potential of the multicomponent SEI to enhance the stability and reversibility of the RT-Na/S batteries.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 9","pages":" 6813-6825"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08118h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The SEI is pivotal for the reversibility of RT-Na/S batteries. The performance of RT-Na/S batteries critically depends on the solid electrolyte interphase's (SEI) mechanical and ionic transport properties. An ideal SEI is sufficiently stiff yet ductile and supports ionic diffusion to minimize the dendrite formation. In the present study, we report the design of a multiphasic SEI comprising NaF, NaI, and NaNH2 to suppress the dendrite growth. An optimized amount of the novel organic additive, i.e., CH3NH3I, helps facilitate the formation of the desired SEI. Density Functional Theory (DFT) calculations reveal that the chemical composition effectively balances the electro-mechanical attributes of the SEI, i.e., a high stiffness (≈66 GPa) while maintaining a desired critical strain (≈40%). Besides this, the major chemical constituents of the SEI facilitate fast ion kinetics due to the low energy barriers associated with NaNH2 and NaI (≈0.26 eV and ≈0.5 eV, respectively). This multiphasic SEI enables reversible sodium plating and stripping for an unprecedented time of over 3200 hours. The uniqueness of the multiphasic SEI becomes apparent when demonstrated in the coin and pouch format of the RT-Na/S battery, maintaining a stable operation for over 500 cycles with an initial discharge capacity of ∼700 mA h g−1. These findings underscore the potential of the multicomponent SEI to enhance the stability and reversibility of the RT-Na/S batteries.

Abstract Image

用于室温钠硫袋式电池的多相金属钠阳极
SEI对于RT-Na/S电池的可逆性至关重要。RT-Na/S电池的性能主要取决于固体电解质界面(SEI)的机械和离子传输特性。理想的SEI具有足够的硬度和延展性,并支持离子扩散以减少枝晶的形成。在本研究中,我们设计了由NaF、NaI和NaNH2组成的多相SEI来抑制枝晶的生长。新型有机添加剂,即CH3NH3I的优化量有助于促进所需SEI的形成。密度泛函理论(DFT)计算表明,化学成分有效地平衡了SEI的机电属性,即高刚度(≈66 GPa),同时保持所需的临界应变(≈40%)。此外,SEI的主要化学成分由于与NaNH₂和NaI相关的低能垒(分别≈0.26 eV和≈0.5 eV)而促进了快速离子动力学。这种多相SEI能够在超过3200小时的时间内实现可逆的镀钠和剥离。多相SEI的独特性在硬币和袋状的RT-Na/S电池中得到了明显的展示,保持稳定运行超过500次循环,初始放电容量为~700毫安时(⁻¹)。这些发现强调了多组分SEI在增强RT-Na/S电池稳定性和可逆性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信