Wanderson O. Silva, Alexandre Mabillard, Mathieu Soutrenon, Grégoire Gschwend, Yorick Ligen, Steve Joris, Luc Bondaz, Kumar Varoon Agrawal and Hubert H. Girault
{"title":"Print-light-synthesis of electrocatalytically active gas diffusion electrodes for fuel cell applications†","authors":"Wanderson O. Silva, Alexandre Mabillard, Mathieu Soutrenon, Grégoire Gschwend, Yorick Ligen, Steve Joris, Luc Bondaz, Kumar Varoon Agrawal and Hubert H. Girault","doi":"10.1039/D4TA04837G","DOIUrl":null,"url":null,"abstract":"<p >The present work reports a simple approach to manufacture electrocatalytically active gas diffusion electrodes (GDEs) in two steps: (i) inkjet printing and (ii) flash light irradiation from a xenon flash lamp, a process called Print-light-synthesis (PLS). Pt/C PLS GDEs were manufactured from a Pt precursor ink printed directly over a carbon paper gas diffusion layer (GDL) with a microporous layer (MPL) of carbon with a metal precursor loading of 0.5 mg<small><sub>Pt</sub></small><small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, the precursor film was then exposed to flash light irradiation at 450 V-pulse for 100 ms. SEM images showed a uniform and thin Pt catalyst layer deposited on top of the GDL. XRD and XPS spectra evidenced metallic Pt with face-centered cubic crystalline structures. TEM analysis provided an average particle size of 5.0 ± 0.3 nm with uniform particle distribution over the MPL. Electrochemical characterization was performed on half-cell and fuel cell setups showing electrocatalytic performances comparable to that of a reference GDE Pt/C. Pt/C PLS shows even better fuel cell performance per gram of Pt catalyst compared to the reference Pt/C. This work shows that PLS is a very simple approach, <em>e.g.</em> to manufacture GDEs on a roll-to-roll basis for applications in energy conversion devices such as fuel cells, batteries, electrolyzers, <em>etc.</em></p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 10","pages":" 7403-7412"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta04837g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta04837g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present work reports a simple approach to manufacture electrocatalytically active gas diffusion electrodes (GDEs) in two steps: (i) inkjet printing and (ii) flash light irradiation from a xenon flash lamp, a process called Print-light-synthesis (PLS). Pt/C PLS GDEs were manufactured from a Pt precursor ink printed directly over a carbon paper gas diffusion layer (GDL) with a microporous layer (MPL) of carbon with a metal precursor loading of 0.5 mgPt−1 cm−2, the precursor film was then exposed to flash light irradiation at 450 V-pulse for 100 ms. SEM images showed a uniform and thin Pt catalyst layer deposited on top of the GDL. XRD and XPS spectra evidenced metallic Pt with face-centered cubic crystalline structures. TEM analysis provided an average particle size of 5.0 ± 0.3 nm with uniform particle distribution over the MPL. Electrochemical characterization was performed on half-cell and fuel cell setups showing electrocatalytic performances comparable to that of a reference GDE Pt/C. Pt/C PLS shows even better fuel cell performance per gram of Pt catalyst compared to the reference Pt/C. This work shows that PLS is a very simple approach, e.g. to manufacture GDEs on a roll-to-roll basis for applications in energy conversion devices such as fuel cells, batteries, electrolyzers, etc.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.