{"title":"Enhanced Sodium Storage and Thermal Safety of NaNi1/3Fe1/3Mn1/3O2 Cathode via Incorporation of TiN and WO3","authors":"Zhipeng Qin, Yingying Liu, Yucan He, Pengcheng Wang, Guiying Zhao, Hurong Yao, Yingbin Lin, Zhigao Huang, Jiaxin Li","doi":"10.1021/acsami.4c16852","DOIUrl":null,"url":null,"abstract":"This study proposes an efficient, cost-effective, and industrially scalable electrode modulation strategy, which involves directly adding a small amount of high thermal and high conductance TiN and well interface compatible WO<sub>3</sub> to NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NaNFMO-TW) cathode slurry, to effectively reduce electrode polarization and interface side reactions, reduce the Ohmic heat and polarization heat of the battery, and ultimately to significantly improve the sodium-ion storage and thermal safety performance of the battery. At room temperature (RT) and 1C rate, the modified NaNFMO-TW electrode exhibits a reversible capacity of ∼95 mAh g<sup>–1</sup> after 300 cycles, with a capacity retention rate of 82.6%, being higher than the 50.7% for NaNFMO. Furthermore, the assembled pouch battery with NaNFMO-TW retains 58.2% capacity after 300 cycles at RT&0.5C, being conspicuously superior to the 46.1% achieved by the NaNFMO||HC battery. In particular, adiabatic thermal tests and infrared thermal imaging tests reveal a marked improvement in the thermal safety of the modified battery, with a reduction in surface temperature of ∼1.3 and ∼2.2 °C during 3C charging and discharging, respectively. Moreover, the results confirmed the performance enhancement mechanism of NaNFMO by addition of TiN and WO<sub>3</sub>. Such electrode modulation strategy provides a practical method for improving battery performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"1 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16852","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an efficient, cost-effective, and industrially scalable electrode modulation strategy, which involves directly adding a small amount of high thermal and high conductance TiN and well interface compatible WO3 to NaNi1/3Fe1/3Mn1/3O2 (NaNFMO-TW) cathode slurry, to effectively reduce electrode polarization and interface side reactions, reduce the Ohmic heat and polarization heat of the battery, and ultimately to significantly improve the sodium-ion storage and thermal safety performance of the battery. At room temperature (RT) and 1C rate, the modified NaNFMO-TW electrode exhibits a reversible capacity of ∼95 mAh g–1 after 300 cycles, with a capacity retention rate of 82.6%, being higher than the 50.7% for NaNFMO. Furthermore, the assembled pouch battery with NaNFMO-TW retains 58.2% capacity after 300 cycles at RT&0.5C, being conspicuously superior to the 46.1% achieved by the NaNFMO||HC battery. In particular, adiabatic thermal tests and infrared thermal imaging tests reveal a marked improvement in the thermal safety of the modified battery, with a reduction in surface temperature of ∼1.3 and ∼2.2 °C during 3C charging and discharging, respectively. Moreover, the results confirmed the performance enhancement mechanism of NaNFMO by addition of TiN and WO3. Such electrode modulation strategy provides a practical method for improving battery performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.