{"title":"Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity","authors":"Shijun Cui, Yajuan Li, Zhice Xu, Xudong Yu","doi":"10.1021/acsami.4c21099","DOIUrl":null,"url":null,"abstract":"The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA–PAAS) networks. The conformation and aggregate of silk fibroin could be facilely tuned by both ions and pH resulting from the PAA–PAAS network. The optimized hydrogel exhibits intriguing properties, such as high conductivity (3.67 S/m) and transparency, high stretchability (1186%) with a tensile strength of 110 kPa, good adhesion properties, reversible compression, self-healing, and high sensitivity (GF = 10.71). This hydrogel strain sensor can detect large-scale and small human movements in real time, such as limb movements, heartbeats, and pulse. Additionally, its ability to adsorb water and recover effectiveness after losing water from air with 90% humidity along with the capability for low-temperature motion detection facilitated by ethylene glycol further enhance its practical utility. This work offers a novel and simple approach to design flexible bionic strain sensors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"39 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21099","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA–PAAS) networks. The conformation and aggregate of silk fibroin could be facilely tuned by both ions and pH resulting from the PAA–PAAS network. The optimized hydrogel exhibits intriguing properties, such as high conductivity (3.67 S/m) and transparency, high stretchability (1186%) with a tensile strength of 110 kPa, good adhesion properties, reversible compression, self-healing, and high sensitivity (GF = 10.71). This hydrogel strain sensor can detect large-scale and small human movements in real time, such as limb movements, heartbeats, and pulse. Additionally, its ability to adsorb water and recover effectiveness after losing water from air with 90% humidity along with the capability for low-temperature motion detection facilitated by ethylene glycol further enhance its practical utility. This work offers a novel and simple approach to design flexible bionic strain sensors.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.