Nanoscale High-Entropy Alloys for Solar and Thermal Applications

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-28 DOI:10.1039/d4nr04697h
Xinyang Li, Yalong Zou, Haijiao Lu, Lianzhou Wang
{"title":"Nanoscale High-Entropy Alloys for Solar and Thermal Applications","authors":"Xinyang Li, Yalong Zou, Haijiao Lu, Lianzhou Wang","doi":"10.1039/d4nr04697h","DOIUrl":null,"url":null,"abstract":"High-entropy alloys (HEAs) represent a novel class of materials that challenge traditional alloy design principles by incorporating five or more principal elements in near-equiatomic ratios. This unique composition results in enhanced mechanical properties, thermal stability, and corrosion resistance. Recent research highlights the significant potential of HEAs in catalysis, particularly in solar- and thermo- related applications. Their high configurational entropy not only stabilizes single-phase structures but also facilitates unique electronic and catalytic behaviors. The tunability of HEAs allows for the optimization of their physical and chemical properties, enabling improved reaction rates and selectivity in various catalytic processes. This review provides a thorough overview of HEAs, covering their evolution, synthesis methods, characterization techniques, and computational modeling approaches. We critically assess the fundamental properties and underlying mechanisms driving their exceptional catalytic performance, and explore their current and potential applications in catalysis. By identifying key challenges and promising directions, we aim to guide future research toward unlocking the full potential of HEAs in catalytic systems.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"59 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04697h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy alloys (HEAs) represent a novel class of materials that challenge traditional alloy design principles by incorporating five or more principal elements in near-equiatomic ratios. This unique composition results in enhanced mechanical properties, thermal stability, and corrosion resistance. Recent research highlights the significant potential of HEAs in catalysis, particularly in solar- and thermo- related applications. Their high configurational entropy not only stabilizes single-phase structures but also facilitates unique electronic and catalytic behaviors. The tunability of HEAs allows for the optimization of their physical and chemical properties, enabling improved reaction rates and selectivity in various catalytic processes. This review provides a thorough overview of HEAs, covering their evolution, synthesis methods, characterization techniques, and computational modeling approaches. We critically assess the fundamental properties and underlying mechanisms driving their exceptional catalytic performance, and explore their current and potential applications in catalysis. By identifying key challenges and promising directions, we aim to guide future research toward unlocking the full potential of HEAs in catalytic systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信