An efficient catalytic route in haem peroxygenases mediated by O2/small-molecule reductant pairs for sustainable applications

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Di Deng, Zhihui Jiang, Lixin Kang, Langxing Liao, Xiaodong Zhang, Yuben Qiao, Yang Zhou, Liulin Yang, Binju Wang, Aitao Li
{"title":"An efficient catalytic route in haem peroxygenases mediated by O2/small-molecule reductant pairs for sustainable applications","authors":"Di Deng, Zhihui Jiang, Lixin Kang, Langxing Liao, Xiaodong Zhang, Yuben Qiao, Yang Zhou, Liulin Yang, Binju Wang, Aitao Li","doi":"10.1038/s41929-024-01281-7","DOIUrl":null,"url":null,"abstract":"<p>Haem peroxygenases are attractive biocatalysts for incorporating oxygen into organic molecules using H<sub>2</sub>O<sub>2</sub>. However, their practical applications are hindered by irreversible oxidative inactivation due to exogenous H<sub>2</sub>O<sub>2</sub> usage. Here we present an alternative catalytic route in haem peroxygenases that uses O<sub>2</sub> and small-molecule reductants such as ascorbic acid and dehydroascorbic acid (DHA) to drive reactions. Our experimental and computational studies indicated that DHAA, the hydrated form of DHA, serves as the key co-substrate that activates oxygen to generate the active oxyferryl haem compound I. We also demonstrate the broad applicability of this O<sub>2</sub>/reductant-dependent route across various haem peroxygenases, highlighting its biological significance for mono-oxygenase functionality. Importantly, this innovative route avoids the use of H<sub>2</sub>O<sub>2</sub>, thereby preventing the risk of irreversible enzyme inactivation. Finally, scaled-up reactions yielded chiral, value-added products with excellent productivity, underscoring the synthetic potential of this developed peroxygenase technology for sustainable chemical transformations.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"20 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01281-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Haem peroxygenases are attractive biocatalysts for incorporating oxygen into organic molecules using H2O2. However, their practical applications are hindered by irreversible oxidative inactivation due to exogenous H2O2 usage. Here we present an alternative catalytic route in haem peroxygenases that uses O2 and small-molecule reductants such as ascorbic acid and dehydroascorbic acid (DHA) to drive reactions. Our experimental and computational studies indicated that DHAA, the hydrated form of DHA, serves as the key co-substrate that activates oxygen to generate the active oxyferryl haem compound I. We also demonstrate the broad applicability of this O2/reductant-dependent route across various haem peroxygenases, highlighting its biological significance for mono-oxygenase functionality. Importantly, this innovative route avoids the use of H2O2, thereby preventing the risk of irreversible enzyme inactivation. Finally, scaled-up reactions yielded chiral, value-added products with excellent productivity, underscoring the synthetic potential of this developed peroxygenase technology for sustainable chemical transformations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信