A Scalable Calibration Method for Enhanced Accuracy in Dense Air Quality Monitoring Networks

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Anna R. Winter, Yishu Zhu, Naomi G. Asimow, Milan Y. Patel, Ronald C. Cohen
{"title":"A Scalable Calibration Method for Enhanced Accuracy in Dense Air Quality Monitoring Networks","authors":"Anna R. Winter, Yishu Zhu, Naomi G. Asimow, Milan Y. Patel, Ronald C. Cohen","doi":"10.1021/acs.est.4c08855","DOIUrl":null,"url":null,"abstract":"Deployment of large numbers of low capital cost sensors to increase the spatial density of air quality measurements enables applications that build on mapping air at neighborhood scales. Effective deployment requires not only low capital costs for observations but also a simultaneous reduction in labor costs. The Berkeley Environmental Air Quality and CO<sub>2</sub> Network (BEACO<sub>2</sub>N) is a sensor network measuring O<sub>3</sub>, CO, NO, and NO<sub>2</sub>, particulate matter (PM<sub>2.5</sub>), and CO<sub>2</sub> at dozens of locations in cities where it is deployed. Here, we describe a low labor cost in situ field calibration for the BEACO<sub>2</sub>N O<sub>3</sub>, CO, NO, and NO<sub>2</sub> sensors. This method identifies and leverages uniform periods in concentrations across the network for calibration. The calibration achieves high accuracy and low biases with respect to temperature, humidity, and concentration, with coefficients of determination and root mean square errors of 0.88 and 3.70 ppb for O<sub>3</sub>, 0.66 and 3.16 ppb for NO<sub>2</sub>, and 0.79 and 1.58 ppb for NO. Performance of the CO sensor is 0.90 and 33.3 ppb at a site colocated with reference measurements. The method is a crucial step toward lowering operational costs of delivering accurate measurements in dense networks employing large numbers of inexpensive air quality sensors.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"94 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08855","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Deployment of large numbers of low capital cost sensors to increase the spatial density of air quality measurements enables applications that build on mapping air at neighborhood scales. Effective deployment requires not only low capital costs for observations but also a simultaneous reduction in labor costs. The Berkeley Environmental Air Quality and CO2 Network (BEACO2N) is a sensor network measuring O3, CO, NO, and NO2, particulate matter (PM2.5), and CO2 at dozens of locations in cities where it is deployed. Here, we describe a low labor cost in situ field calibration for the BEACO2N O3, CO, NO, and NO2 sensors. This method identifies and leverages uniform periods in concentrations across the network for calibration. The calibration achieves high accuracy and low biases with respect to temperature, humidity, and concentration, with coefficients of determination and root mean square errors of 0.88 and 3.70 ppb for O3, 0.66 and 3.16 ppb for NO2, and 0.79 and 1.58 ppb for NO. Performance of the CO sensor is 0.90 and 33.3 ppb at a site colocated with reference measurements. The method is a crucial step toward lowering operational costs of delivering accurate measurements in dense networks employing large numbers of inexpensive air quality sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信