Synthesis of poly(3,4-propylenedioxythiophene) (PProDOT) analogues via mechanochemical oxidative polymerization†

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Tanzida Zubair , Raul S. Ramos , Ashley Morales , Robert M. Pankow
{"title":"Synthesis of poly(3,4-propylenedioxythiophene) (PProDOT) analogues via mechanochemical oxidative polymerization†","authors":"Tanzida Zubair ,&nbsp;Raul S. Ramos ,&nbsp;Ashley Morales ,&nbsp;Robert M. Pankow","doi":"10.1039/d4py01253d","DOIUrl":null,"url":null,"abstract":"<div><div>Conjugated polymers (CPs) are foundational materials in established and emerging organic electronic technologies, including organic photovoltaics, lithium-ion batteries, electrochromic displays and smart-windows, and thin-film transistors. Although CPs can be prepared <em>via</em> sustainable syntheses relative to their inorganic counterparts, current polymerization methods often invoke the use of toxic, hazardous solvents, such as toluene, chlorobenzene, or dimethylformamide, and high-temperatures (<em>T</em> &gt; 100 °C) to afford polymer products in desirable yields and molecular weights (<em>M</em><sub>n</sub>). Here, we report the solvent-free synthesis of poly(3,4-propylenedioxythiophene) (PProDOT) analogues using mechanochemical oxidative polymerization without the application of external heating. PProDOT-OC6, which is functionalized with <em>n</em>-hexyloxy sidechains, is synthesized in 46% yield with a <em>M</em><sub>n</sub> of 16.9 kg mol<sup>−1</sup> in 1 h using only a milling jar and ball, FeCl<sub>3</sub> oxidant, and NaCl as an additive. The structural fidelity of mechanochemically synthesized PProDOT-OC6 is confirmed <em>via</em><sup>1</sup>H-NMR relative to PProDOT-OC6 synthesized using solvent based oxidative polymerization, in addition to the optical absorption and electrochemical properties. The optimal mechanochemical polymerization conditions are then applied to PProDOT analogues with extended, <em>n</em>-decyloxy (PProDOT-OC10) or oligo(ethylene glycol) sidechains (PProDOT-OEG<sub>3</sub>) to demonstrate the tolerance of these solvent-free polymerization conditions towards structurally diverse sidechains. These findings offer a new platform and approach for further developing sustainable CP polymerization methods.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 10","pages":"Pages 1188-1196"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995425000403","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated polymers (CPs) are foundational materials in established and emerging organic electronic technologies, including organic photovoltaics, lithium-ion batteries, electrochromic displays and smart-windows, and thin-film transistors. Although CPs can be prepared via sustainable syntheses relative to their inorganic counterparts, current polymerization methods often invoke the use of toxic, hazardous solvents, such as toluene, chlorobenzene, or dimethylformamide, and high-temperatures (T > 100 °C) to afford polymer products in desirable yields and molecular weights (Mn). Here, we report the solvent-free synthesis of poly(3,4-propylenedioxythiophene) (PProDOT) analogues using mechanochemical oxidative polymerization without the application of external heating. PProDOT-OC6, which is functionalized with n-hexyloxy sidechains, is synthesized in 46% yield with a Mn of 16.9 kg mol−1 in 1 h using only a milling jar and ball, FeCl3 oxidant, and NaCl as an additive. The structural fidelity of mechanochemically synthesized PProDOT-OC6 is confirmed via1H-NMR relative to PProDOT-OC6 synthesized using solvent based oxidative polymerization, in addition to the optical absorption and electrochemical properties. The optimal mechanochemical polymerization conditions are then applied to PProDOT analogues with extended, n-decyloxy (PProDOT-OC10) or oligo(ethylene glycol) sidechains (PProDOT-OEG3) to demonstrate the tolerance of these solvent-free polymerization conditions towards structurally diverse sidechains. These findings offer a new platform and approach for further developing sustainable CP polymerization methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信