Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shen Xu, Tuoya Naren, Yanwei Zhao, Qianfeng Gu, Ting Wai Lau, Chun-Sing Lee, Fu-Rong Chen, Jun Yin, Libao Chen, Qichun Zhang
{"title":"Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries","authors":"Shen Xu, Tuoya Naren, Yanwei Zhao, Qianfeng Gu, Ting Wai Lau, Chun-Sing Lee, Fu-Rong Chen, Jun Yin, Libao Chen, Qichun Zhang","doi":"10.1002/anie.202422040","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed. By introducing polyethylene glycol as the side chains, two COFs (CityU-28 and CityU-29) not only become soluble for the facile spin-coating technique, but also can facilitate the lithium-ion migration in batteries. Furthermore, when coated on the lithium anode of LMB, both COFs can act as artificial solid electrolyte interphase to prevent dendrite growth thus enabling the long-term stability of the cells. Notably, the symmetric CityU-29@Li cell can work for more than 5000 h at a current density of 2 mA cm-2 and an areal capacity of 1 mAh cm-2. A remarkable capacity retention of 78.9% after 1500 cycles and a Coulombic efficiency of about 99.9% at 1.0 C can also be realized in CityU-29@Li||LiFePO4 full cell. This work could provide a universal design strategy for soluble COFs and enlighten their application in diverse scenarios, especially energy-related fields.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"35 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed. By introducing polyethylene glycol as the side chains, two COFs (CityU-28 and CityU-29) not only become soluble for the facile spin-coating technique, but also can facilitate the lithium-ion migration in batteries. Furthermore, when coated on the lithium anode of LMB, both COFs can act as artificial solid electrolyte interphase to prevent dendrite growth thus enabling the long-term stability of the cells. Notably, the symmetric CityU-29@Li cell can work for more than 5000 h at a current density of 2 mA cm-2 and an areal capacity of 1 mAh cm-2. A remarkable capacity retention of 78.9% after 1500 cycles and a Coulombic efficiency of about 99.9% at 1.0 C can also be realized in CityU-29@Li||LiFePO4 full cell. This work could provide a universal design strategy for soluble COFs and enlighten their application in diverse scenarios, especially energy-related fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信