Self-Heating Conductive Ceramic Composites for High Temperature Thermal Energy Storage

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lin Yang, Peng Peng, Nathaniel Weger, Sean Mills, Clément Messeri, Akanksha K. Menon, Steven Zeltmann, Finn Babbe, Qiye Zheng, Chaochao Dun, Chuan Zhang, Jeffrey J. Urban, Andrew M. Minor, Ravi Prasher, Hanna Breunig, Sean Lubner
{"title":"Self-Heating Conductive Ceramic Composites for High Temperature Thermal Energy Storage","authors":"Lin Yang, Peng Peng, Nathaniel Weger, Sean Mills, Clément Messeri, Akanksha K. Menon, Steven Zeltmann, Finn Babbe, Qiye Zheng, Chaochao Dun, Chuan Zhang, Jeffrey J. Urban, Andrew M. Minor, Ravi Prasher, Hanna Breunig, Sean Lubner","doi":"10.1021/acsenergylett.4c03270","DOIUrl":null,"url":null,"abstract":"The absence of affordable and deployable large-scale energy storage poses a major barrier to providing zero-emission energy on demand for societal decarbonization. High temperature thermal energy storage is one promising option with low cost and high scalability, but it is hindered by the inherent complexity of simultaneously satisfying all of the material requirements. Here we design a class of ceramic–carbon composites based on co-optimizing mechanical, electrical, and thermal properties. These composites demonstrate stability in soak-and-hold tests and direct self-heating up to 1,936 °C and 750 thermal cycles from 500 to 1,630 °C without degradation. This thermal performance derives from their composition and microstructural design as verified by in situ high-temperature transmission electron microscopy and X-ray diffraction. They offer both higher energy density and lower cost than conventional storage technologies with a projected system Levelized Cost of Storage below the U.S. Department of Energy’s 2030 target 5 ¢/kWh (electric).","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"30 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03270","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The absence of affordable and deployable large-scale energy storage poses a major barrier to providing zero-emission energy on demand for societal decarbonization. High temperature thermal energy storage is one promising option with low cost and high scalability, but it is hindered by the inherent complexity of simultaneously satisfying all of the material requirements. Here we design a class of ceramic–carbon composites based on co-optimizing mechanical, electrical, and thermal properties. These composites demonstrate stability in soak-and-hold tests and direct self-heating up to 1,936 °C and 750 thermal cycles from 500 to 1,630 °C without degradation. This thermal performance derives from their composition and microstructural design as verified by in situ high-temperature transmission electron microscopy and X-ray diffraction. They offer both higher energy density and lower cost than conventional storage technologies with a projected system Levelized Cost of Storage below the U.S. Department of Energy’s 2030 target 5 ¢/kWh (electric).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信