Non-transition metal modulated reducibility strategy for highly conductive mixed electronic and ionic (LixLa2/3-x/3)TiO3 perovskite

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yifan Xu , Zongzi Jin , Xiangkun Kong , Chi Zhang , Cui Li , Zhiwen Zhuo , Ranran Peng , Chengwei Wang
{"title":"Non-transition metal modulated reducibility strategy for highly conductive mixed electronic and ionic (LixLa2/3-x/3)TiO3 perovskite","authors":"Yifan Xu ,&nbsp;Zongzi Jin ,&nbsp;Xiangkun Kong ,&nbsp;Chi Zhang ,&nbsp;Cui Li ,&nbsp;Zhiwen Zhuo ,&nbsp;Ranran Peng ,&nbsp;Chengwei Wang","doi":"10.1016/j.ensm.2025.104074","DOIUrl":null,"url":null,"abstract":"<div><div>In solid-state batteries, mixed electronic and ionic conductors play a crucial role in enhancing electrode charge transfer. This study proposes a strategy for modulating the reducibility of materials to develop stable and highly conductive mixed conductors based on perovskite-type (Li<sub>x</sub>La<sub>2/3-x/3</sub>)TiO<sub>3</sub> oxides. Traditional methods that enhance electronic conductivity through B-site doping with variable valence transition metals have limited improvement on electronic conductivity with presence of significant secondary phases. Therefore, our approach focuses on A-site doping with fixed-valence non-transition metals to affect the reducibility of (Li<sub>x</sub>La<sub>2/3-x/3</sub>)TiO<sub>3</sub>, thereby regulating its electronic conductance properties. Our findings reveal that co-doping with the alkali metal Na and the alkaline earth metal Sr at the Li-site enhances the reducibility of Ti and doubles the electronic conductivity to 2.89 × 10<sup>–3</sup> S/cm compared to the undoped composition. Meanwhile, Na-Sr co-doping improves the reconfiguration of the crystal lattice during the reduction process, so that it exhibits high sintering activity and thermodynamic stability. These factors together contribute to its outstanding rate capability and long cycle stability, enabling it to maintain over 50% of its initial capacity at a 50 C-rate, and demonstrating over 800 stable cycles at a 2.5 C-rate. This strategy provides a new way to develop high-performance mixed-conductor electrode framework materials for improving the electrode kinetic behavior of solid-state batteries and promoting their practical applications.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"75 ","pages":"Article 104074"},"PeriodicalIF":20.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725000753","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In solid-state batteries, mixed electronic and ionic conductors play a crucial role in enhancing electrode charge transfer. This study proposes a strategy for modulating the reducibility of materials to develop stable and highly conductive mixed conductors based on perovskite-type (LixLa2/3-x/3)TiO3 oxides. Traditional methods that enhance electronic conductivity through B-site doping with variable valence transition metals have limited improvement on electronic conductivity with presence of significant secondary phases. Therefore, our approach focuses on A-site doping with fixed-valence non-transition metals to affect the reducibility of (LixLa2/3-x/3)TiO3, thereby regulating its electronic conductance properties. Our findings reveal that co-doping with the alkali metal Na and the alkaline earth metal Sr at the Li-site enhances the reducibility of Ti and doubles the electronic conductivity to 2.89 × 10–3 S/cm compared to the undoped composition. Meanwhile, Na-Sr co-doping improves the reconfiguration of the crystal lattice during the reduction process, so that it exhibits high sintering activity and thermodynamic stability. These factors together contribute to its outstanding rate capability and long cycle stability, enabling it to maintain over 50% of its initial capacity at a 50 C-rate, and demonstrating over 800 stable cycles at a 2.5 C-rate. This strategy provides a new way to develop high-performance mixed-conductor electrode framework materials for improving the electrode kinetic behavior of solid-state batteries and promoting their practical applications.
高导电混合电子和离子(LixLa2/3-x/3)TiO3钙钛矿的非过渡金属调制还原性策略
在固态电池中,混合电子和离子导体在增强电极电荷转移方面起着至关重要的作用。本研究提出了一种调节材料还原性的策略,以开发基于钙钛矿型(LixLa2/3-x/3)TiO3氧化物的稳定和高导电性混合导体。通过b位掺杂变价过渡金属来提高电子导电性的传统方法在存在显著二次相的情况下对电子导电性的改善有限。因此,我们的方法侧重于a位掺杂固定价非过渡金属,以影响(LixLa2/3-x/3)TiO3的还原性,从而调节其电子电导性能。我们的研究结果表明,与碱金属Na和碱土金属Sr在li位点共掺杂增强了Ti的还原性,并且与未掺杂的成分相比,电子电导率提高了一倍,达到2.89 × 10-3 S/cm。同时,Na-Sr共掺杂改善了还原过程中晶格的重构,使其具有较高的烧结活性和热力学稳定性。这些因素共同促成了其出色的倍率能力和长周期稳定性,使其能够在50 c倍率下保持超过50%的初始容量,并在2.5 c倍率下展示了800多个稳定的循环。该策略为开发高性能混合导体电极框架材料,改善固态电池的电极动力学行为,促进其实际应用提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信