Enantioselective synthesis of 2-substituted bicyclo[1.1.1]pentanes via sequential asymmetric imine addition of bicyclo[1.1.0]butanes and skeletal editing
Jin-Teng Che, Wei-Yi Ding, Hong-Bo Zhang, Yong-Bin Wang, Shao-Hua Xiang, Bin Tan
{"title":"Enantioselective synthesis of 2-substituted bicyclo[1.1.1]pentanes via sequential asymmetric imine addition of bicyclo[1.1.0]butanes and skeletal editing","authors":"Jin-Teng Che, Wei-Yi Ding, Hong-Bo Zhang, Yong-Bin Wang, Shao-Hua Xiang, Bin Tan","doi":"10.1038/s41557-024-01710-x","DOIUrl":null,"url":null,"abstract":"<p>The substitution of an aromatic ring with a C(<i>sp</i><sup>3</sup>)-rich bicyclic hydrocarbon, known as bioisosteric replacement, plays a crucial role in modern drug discovery. Substituted bicyclo[1.1.1]pentanes (BCPs) are particularly noteworthy owing to their uniquely three-dimensional stereochemical complexity. 1,3-Difunctionalized BCPs have been widely used as bioisosteres for <i>para</i>-substituted phenyl rings, and they have been incorporated into numerous lead pharmaceutical candidates. 2-Substituted BCPs (substituted at the bridge position) can function as alternatives to <i>ortho</i>- or <i>meta</i>-substituted arene rings; however, the general and efficient construction of these scaffolds remains challenging, particularly if performed in an enantioselective manner. Here we present an approach for synthesizing enantioenriched 2-substituted BCPs by a nitrogen-atom insertion-and-deletion strategy, involving a chiral Brønsted acid-catalytic enantioselective cycloaddition of bicyclo[1.1.0]butanes with imines and nitrogen deletion of resulting aza-bicyclo[2.1.1]hexanes (aza-BCHs) with generally good enantiopurity retention. Mechanistic experiments verify the radical pathway. Chiral BCPs have been readily incorporated into medicinally relevant molecules, and a drug analogue has been successfully prepared enantioselectively.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"32 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01710-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The substitution of an aromatic ring with a C(sp3)-rich bicyclic hydrocarbon, known as bioisosteric replacement, plays a crucial role in modern drug discovery. Substituted bicyclo[1.1.1]pentanes (BCPs) are particularly noteworthy owing to their uniquely three-dimensional stereochemical complexity. 1,3-Difunctionalized BCPs have been widely used as bioisosteres for para-substituted phenyl rings, and they have been incorporated into numerous lead pharmaceutical candidates. 2-Substituted BCPs (substituted at the bridge position) can function as alternatives to ortho- or meta-substituted arene rings; however, the general and efficient construction of these scaffolds remains challenging, particularly if performed in an enantioselective manner. Here we present an approach for synthesizing enantioenriched 2-substituted BCPs by a nitrogen-atom insertion-and-deletion strategy, involving a chiral Brønsted acid-catalytic enantioselective cycloaddition of bicyclo[1.1.0]butanes with imines and nitrogen deletion of resulting aza-bicyclo[2.1.1]hexanes (aza-BCHs) with generally good enantiopurity retention. Mechanistic experiments verify the radical pathway. Chiral BCPs have been readily incorporated into medicinally relevant molecules, and a drug analogue has been successfully prepared enantioselectively.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.