Oilfield-produced water treatment with SiC-coated alumina membranes

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Guangze Qin, Yiman Liu, Luuk C. Rietveld, Sebastiaan G.J. Heijman
{"title":"Oilfield-produced water treatment with SiC-coated alumina membranes","authors":"Guangze Qin, Yiman Liu, Luuk C. Rietveld, Sebastiaan G.J. Heijman","doi":"10.1016/j.seppur.2025.131841","DOIUrl":null,"url":null,"abstract":"During the extraction of fossil fuels, a complex waste stream is produced simultaneously, also known as produced water (PW). Membrane filtration is a promising technology that can successfully enable the treatment and reuse of PW. Silicon carbide (SiC) membranes are preferred for PW treatment, due to their low (ir)reversible fouling compared to other ceramic membranes. However, full SiC is expensive and thus economically less feasible. Therefore, we established a method for coating SiC on alumina (Al<sub>2</sub>O<sub>3</sub>) ultrafiltration membranes, based on low-pressure chemical vapor deposition at 860 °C. In the presented study the fouling resistance and behavior of these novel membranes, with various pore sizes and under different operating conditions, including flux and crossflow velocity, were evaluated. We also used Al<sub>2</sub>O<sub>3</sub> membranes and SiC-coated Al<sub>2</sub>O<sub>3</sub> membranes in constant flux mode to treat real oilfield PW with high salinity (142 mS/cm) and COD (22670 mg/L). Additionally, the fouling mechanisms in the SiC-coated and Al<sub>2</sub>O<sub>3</sub> membranes were analyzed with the help of Focused Ion Beam-Scanning Electron Microscopy imaging. The major findings were that pore blockage served as the initial (irreversible) fouling mechanism and that the (reversible) cake layer, a mixture of organic and inorganic components, dominated the rest of the filtration cycle, where the SiC coated membrane performed better than the original alumina membrane. In addition, it was found that the application of the SiC coating, and the selection of the appropriate pore size (62 nm) and crossflow velocity (0.8 m/s) increased the fouling mitigation, potentially advancing the utilization of ultrafiltration in treating saline PW for resue purposes.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"8 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131841","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

During the extraction of fossil fuels, a complex waste stream is produced simultaneously, also known as produced water (PW). Membrane filtration is a promising technology that can successfully enable the treatment and reuse of PW. Silicon carbide (SiC) membranes are preferred for PW treatment, due to their low (ir)reversible fouling compared to other ceramic membranes. However, full SiC is expensive and thus economically less feasible. Therefore, we established a method for coating SiC on alumina (Al2O3) ultrafiltration membranes, based on low-pressure chemical vapor deposition at 860 °C. In the presented study the fouling resistance and behavior of these novel membranes, with various pore sizes and under different operating conditions, including flux and crossflow velocity, were evaluated. We also used Al2O3 membranes and SiC-coated Al2O3 membranes in constant flux mode to treat real oilfield PW with high salinity (142 mS/cm) and COD (22670 mg/L). Additionally, the fouling mechanisms in the SiC-coated and Al2O3 membranes were analyzed with the help of Focused Ion Beam-Scanning Electron Microscopy imaging. The major findings were that pore blockage served as the initial (irreversible) fouling mechanism and that the (reversible) cake layer, a mixture of organic and inorganic components, dominated the rest of the filtration cycle, where the SiC coated membrane performed better than the original alumina membrane. In addition, it was found that the application of the SiC coating, and the selection of the appropriate pore size (62 nm) and crossflow velocity (0.8 m/s) increased the fouling mitigation, potentially advancing the utilization of ultrafiltration in treating saline PW for resue purposes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信