Sabatier Principle Inspired Bifunctional Alloy Interface for Stable and High-Depth Discharging Zinc Metal Anodes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingya Yu, Zizheng Song, Qi Qi, Xiaobin Hui, Kai Qi, Yiyuan Ma, Feiyang Chen, Qi Meng, Renjie Li, Lyuchao Zhuang, Kang Cheung Chan, Zibin Chen, Bao Yu Xia, Zheng-Long Xu
{"title":"Sabatier Principle Inspired Bifunctional Alloy Interface for Stable and High-Depth Discharging Zinc Metal Anodes","authors":"Jingya Yu, Zizheng Song, Qi Qi, Xiaobin Hui, Kai Qi, Yiyuan Ma, Feiyang Chen, Qi Meng, Renjie Li, Lyuchao Zhuang, Kang Cheung Chan, Zibin Chen, Bao Yu Xia, Zheng-Long Xu","doi":"10.1002/anie.202423236","DOIUrl":null,"url":null,"abstract":"Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn. The heteroatomic interaction-dependent electrochemical performance parallels the Sabatier principle. Morphological analyses reveal that bare Zn anodes display detrimental etching pits during stripping, which is different from the uniform dissolution for Cu@Zn electrodes. During subsequent plating, the conductive interface serves as a secondary current collector for uniform Zn deposition in Cu@Zn, thus demonstrating a bifunctional nature. Atomic observations disclose the working mechanisms of this interface as a gradual phase transition from Cu to CuZn5 during cycling. The Cu@Zn anodes exhibit an ultralong cycling lifespan of over 8000 h at a low current of 1 mA cm-2 and over 250 h at a high depth of discharge of 80%. They also demonstrate practical feasibility by maintaining 88.7% capacity retention after 1000 cycles in Cu@Zn||VO2 full cells. This work provides new insights into the Sabatier chemistry inspired bifunctional layers for Zn metal battery system.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"47 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423236","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn. The heteroatomic interaction-dependent electrochemical performance parallels the Sabatier principle. Morphological analyses reveal that bare Zn anodes display detrimental etching pits during stripping, which is different from the uniform dissolution for Cu@Zn electrodes. During subsequent plating, the conductive interface serves as a secondary current collector for uniform Zn deposition in Cu@Zn, thus demonstrating a bifunctional nature. Atomic observations disclose the working mechanisms of this interface as a gradual phase transition from Cu to CuZn5 during cycling. The Cu@Zn anodes exhibit an ultralong cycling lifespan of over 8000 h at a low current of 1 mA cm-2 and over 250 h at a high depth of discharge of 80%. They also demonstrate practical feasibility by maintaining 88.7% capacity retention after 1000 cycles in Cu@Zn||VO2 full cells. This work provides new insights into the Sabatier chemistry inspired bifunctional layers for Zn metal battery system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信