Revealing Molecular Connections between Dissolved Organic Matter in Surface Water Sources and Their Cytotoxicity Influenced by Chlorination Disinfection

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Huihui Hong, Hai Huang, Sheng-Ao Li, Jinxian Lin, Kun Luo, Xinghong Cao, Fuyi Cui, Zhou Zhou, Hua Ma
{"title":"Revealing Molecular Connections between Dissolved Organic Matter in Surface Water Sources and Their Cytotoxicity Influenced by Chlorination Disinfection","authors":"Huihui Hong, Hai Huang, Sheng-Ao Li, Jinxian Lin, Kun Luo, Xinghong Cao, Fuyi Cui, Zhou Zhou, Hua Ma","doi":"10.1021/acs.est.4c09795","DOIUrl":null,"url":null,"abstract":"Dissolved organic matter (DOM) is the primary precursor of disinfection products (DBPs) during chlorination. However, the compositional characteristics of DOM transformation during the chlorination process in different source waters and its relationship to cytotoxicity remain understudied. Here, we used high-resolution mass spectrometry to evaluate chlorination-induced molecular-level changes in DOM derived from different surface water sources. We correlated DOM components with the cytotoxicity profiles of selected DBPs using new alternative methods with predictive toxicological assessments. Our findings indicate a selective chlorination of DOM in natural waters and a tendency for lignin and protein conversion during the manual chlorination process. The reactivity of bioactive compounds decreased in the order of lignin > protein > tannin or ConAC. The cytotoxicity of DOM from source waters is mainly attributed to lignin- and protein-like compounds within the CHO and CHNO groups. Additionally, mitochondrial damage is a highly sensitive indicator of DOM-induced cytotoxicity. The toxicity profiles of DBPs revealed 37 common toxicity-driving components characterized by low mass, medium H/C ratio, low O/C ratio, reduction state, and hydrophobicity. Our findings highlight the need to exploit the health effects of DOM and provide substantial experimental evidence for the necessity to remove potential toxicants.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"78 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09795","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dissolved organic matter (DOM) is the primary precursor of disinfection products (DBPs) during chlorination. However, the compositional characteristics of DOM transformation during the chlorination process in different source waters and its relationship to cytotoxicity remain understudied. Here, we used high-resolution mass spectrometry to evaluate chlorination-induced molecular-level changes in DOM derived from different surface water sources. We correlated DOM components with the cytotoxicity profiles of selected DBPs using new alternative methods with predictive toxicological assessments. Our findings indicate a selective chlorination of DOM in natural waters and a tendency for lignin and protein conversion during the manual chlorination process. The reactivity of bioactive compounds decreased in the order of lignin > protein > tannin or ConAC. The cytotoxicity of DOM from source waters is mainly attributed to lignin- and protein-like compounds within the CHO and CHNO groups. Additionally, mitochondrial damage is a highly sensitive indicator of DOM-induced cytotoxicity. The toxicity profiles of DBPs revealed 37 common toxicity-driving components characterized by low mass, medium H/C ratio, low O/C ratio, reduction state, and hydrophobicity. Our findings highlight the need to exploit the health effects of DOM and provide substantial experimental evidence for the necessity to remove potential toxicants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信