Siyuan Wang , Kaixin Yan , Ying Dong , Yihang Chen , Jiawei Song , Yufei Chen , Xiaoyan Liu , Ruiqiang Qi , Xinyu Zhou , Jiuchang Zhong , Jing Li
{"title":"The influence of microplastics on hypertension-associated cardiovascular injury via the modulation of gut microbiota","authors":"Siyuan Wang , Kaixin Yan , Ying Dong , Yihang Chen , Jiawei Song , Yufei Chen , Xiaoyan Liu , Ruiqiang Qi , Xinyu Zhou , Jiuchang Zhong , Jing Li","doi":"10.1016/j.envpol.2025.125760","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls. Oral administration of MPs led to obvious increases in systolic, diastolic and mean BP levels in mice. MPs were associated with promoting myocardial hypertrophy, fibrosis, and cardiac remodeling through alterations in gut microbial composition, such as <em>Prevotella</em> and <em>Coprobacillus</em>, or fecal metabolites Betaine and Glycyrrhetinic acid. The hypertensive damage mediated by MPs was significantly mitigated by the high-fiber diet or antibiotics that targeted the gut microbiota. Notablely, fecal microbiota transplantation from mice treated with MPs led to an increase in systolic BP levels and the development of cardiac dysfunction. Our findings offer valuable insights into the complex interplay between MPs and the gut microbiome in the context of hypertension, and suggest potential strategies for reducing the vascular and cardiac injury caused by MPs.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"368 ","pages":"Article 125760"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125001332","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls. Oral administration of MPs led to obvious increases in systolic, diastolic and mean BP levels in mice. MPs were associated with promoting myocardial hypertrophy, fibrosis, and cardiac remodeling through alterations in gut microbial composition, such as Prevotella and Coprobacillus, or fecal metabolites Betaine and Glycyrrhetinic acid. The hypertensive damage mediated by MPs was significantly mitigated by the high-fiber diet or antibiotics that targeted the gut microbiota. Notablely, fecal microbiota transplantation from mice treated with MPs led to an increase in systolic BP levels and the development of cardiac dysfunction. Our findings offer valuable insights into the complex interplay between MPs and the gut microbiome in the context of hypertension, and suggest potential strategies for reducing the vascular and cardiac injury caused by MPs.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.