Kallol Barai, Matthew Wallhead, Bruce Hall, Parinaz Rahimzadeh-Bajgiran, Jose Meireles, Ittai Herrmann, Yong-Jiang Zhang
{"title":"Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: distinct temporal and reference temperature effects","authors":"Kallol Barai, Matthew Wallhead, Bruce Hall, Parinaz Rahimzadeh-Bajgiran, Jose Meireles, Ittai Herrmann, Yong-Jiang Zhang","doi":"10.1007/s11119-024-10216-y","DOIUrl":null,"url":null,"abstract":"<p>The use of thermal-based crop water stress index (CWSI) has been studied in many crops in semi-arid regions and found as an effective method in detecting real-time crop water status of commercial fields remotely and non-destructively. However, to our knowledge, no previous studies have validated the usefulness of CWSI in a temperate crop like wild blueberries. Additionally, the temporal changes of the water status estimation model has not been well-studied. In this multi-year study, Unoccupied Aerial Vehicle (UAV)-borne thermal imageries were collected in 2019, 2020, and 2021 to test the temporal effects and the impact of different approach-based reference temperatures (T<sub><i>wet</i></sub>, wet reference temperature; T<sub><i>dry</i></sub>, dry reference temperature) on leaf water potential (LWP) estimation models using CWSI in two large adjacent wild blueberry fields in Maine, United States. We found that different sampling dates have a significant impact on LWP estimation models using CWSI<sub>SE</sub> (statistical T<sub><i>wet</i></sub> and empirical T<sub><i>dry</i></sub> reference) and CWSI<sub>SS</sub> (statistical T<sub><i>wet</i></sub> and statistical T<sub><i>dry</i></sub> reference). Further, CWSI<sub>BB</sub> calculated with bio-indicator-based T<sub><i>wet</i></sub> and T<sub><i>dry</i></sub> reference was found more effective (<i>r</i>² = 0.79<i>)</i> in estimating LWP in 2021, compared to the CWSI<sub>SE</sub> and CWSI<sub>SS</sub> approaches in 2019 (<i>r</i>² = 0.34 & <i>r</i>² = 0.36), 2020 (<i>r</i>² = 0.38 & <i>r</i>² = 0.44) and 2021 (<i>r</i>² = 0.43 & <i>r</i>² = 0.46). CWSI<sub>BB</sub> -LWP model-based crop water status maps show high variation in the crop water status of wild blueberries, even in an evenly irrigated field, suggesting the potential of UAV-borne thermal cameras to detect real-time crop water status within the field, with the CWSI<sub>BB</sub> calculated from bio-indicator-based references being more reliable. Our results could be used for precision irrigation to increase the overall water use efficiency and profitability of wild blueberry production.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"47 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10216-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of thermal-based crop water stress index (CWSI) has been studied in many crops in semi-arid regions and found as an effective method in detecting real-time crop water status of commercial fields remotely and non-destructively. However, to our knowledge, no previous studies have validated the usefulness of CWSI in a temperate crop like wild blueberries. Additionally, the temporal changes of the water status estimation model has not been well-studied. In this multi-year study, Unoccupied Aerial Vehicle (UAV)-borne thermal imageries were collected in 2019, 2020, and 2021 to test the temporal effects and the impact of different approach-based reference temperatures (Twet, wet reference temperature; Tdry, dry reference temperature) on leaf water potential (LWP) estimation models using CWSI in two large adjacent wild blueberry fields in Maine, United States. We found that different sampling dates have a significant impact on LWP estimation models using CWSISE (statistical Twet and empirical Tdry reference) and CWSISS (statistical Twet and statistical Tdry reference). Further, CWSIBB calculated with bio-indicator-based Twet and Tdry reference was found more effective (r² = 0.79) in estimating LWP in 2021, compared to the CWSISE and CWSISS approaches in 2019 (r² = 0.34 & r² = 0.36), 2020 (r² = 0.38 & r² = 0.44) and 2021 (r² = 0.43 & r² = 0.46). CWSIBB -LWP model-based crop water status maps show high variation in the crop water status of wild blueberries, even in an evenly irrigated field, suggesting the potential of UAV-borne thermal cameras to detect real-time crop water status within the field, with the CWSIBB calculated from bio-indicator-based references being more reliable. Our results could be used for precision irrigation to increase the overall water use efficiency and profitability of wild blueberry production.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.