“Open Sourcing” Workflow and Machine Learning Approaches for Attributing Obsidian Artifacts to Their Volcanic Origins: A Feasibility Study from the South Caucasus

IF 2.8 1区 历史学 Q1 ANTHROPOLOGY
Pavol Hnila, Ellery Frahm, Alessandra Gilibert, Arsen Bobokhyan
{"title":"“Open Sourcing” Workflow and Machine Learning Approaches for Attributing Obsidian Artifacts to Their Volcanic Origins: A Feasibility Study from the South Caucasus","authors":"Pavol Hnila, Ellery Frahm, Alessandra Gilibert, Arsen Bobokhyan","doi":"10.1007/s10816-025-09695-8","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, reliable obsidian sourcing requires expensive calibration standards and extensive geological reference collections as well as experience with statistical processing. In the South Caucasus — one of the most obsidian-rich regions on the planet — this combination of requirements has often restricted sourcing studies because few projects have geological reference collections that cover all known obsidian sources. To test an alternative approach, we conducted “open sourcing” using portable X-ray fluorescence (pXRF) analyses of geological specimens with three key changes to the conventional method: (1) commercially available calibration standards were replaced with a loanable Peabody-Yale Reference Obsidians (PYRO) set, (2) a comprehensive geological reference collection was replaced with a published dataset of consensus values (Frahm, 2023a, 2023b), and (3) processing in statistical packages was replaced with two semiautomated machine-learning workflows available online. For comparison, we used classification by-eye with JMP 17.2 statistical software. Furthermore, we propose a new method to evaluate calibrations, which streamlines comparisons and which we refer to as a symmetric difference ratio (SDR). The results of this feasibility study demonstrate that this “open sourcing” workflow is reliable, yet currently only in combination with classification by-eye. When the consensus values were combined with the machine-learning solutions, the classification results were unsatisfactory. The most encouraging aspect of our alternative “open sourcing” workflow is that it enables correct source identification without physically measuring reference collections, therefore surmounting an obstacle that, until now, has severely limited archaeological research. We anticipate that rapid developments in machine-learning will also soon improve the workflow.</p>","PeriodicalId":47725,"journal":{"name":"Journal of Archaeological Method and Theory","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Archaeological Method and Theory","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1007/s10816-025-09695-8","RegionNum":1,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, reliable obsidian sourcing requires expensive calibration standards and extensive geological reference collections as well as experience with statistical processing. In the South Caucasus — one of the most obsidian-rich regions on the planet — this combination of requirements has often restricted sourcing studies because few projects have geological reference collections that cover all known obsidian sources. To test an alternative approach, we conducted “open sourcing” using portable X-ray fluorescence (pXRF) analyses of geological specimens with three key changes to the conventional method: (1) commercially available calibration standards were replaced with a loanable Peabody-Yale Reference Obsidians (PYRO) set, (2) a comprehensive geological reference collection was replaced with a published dataset of consensus values (Frahm, 2023a, 2023b), and (3) processing in statistical packages was replaced with two semiautomated machine-learning workflows available online. For comparison, we used classification by-eye with JMP 17.2 statistical software. Furthermore, we propose a new method to evaluate calibrations, which streamlines comparisons and which we refer to as a symmetric difference ratio (SDR). The results of this feasibility study demonstrate that this “open sourcing” workflow is reliable, yet currently only in combination with classification by-eye. When the consensus values were combined with the machine-learning solutions, the classification results were unsatisfactory. The most encouraging aspect of our alternative “open sourcing” workflow is that it enables correct source identification without physically measuring reference collections, therefore surmounting an obstacle that, until now, has severely limited archaeological research. We anticipate that rapid developments in machine-learning will also soon improve the workflow.

将黑曜石文物归因于火山起源的“开源”工作流和机器学习方法:来自南高加索的可行性研究
传统上,可靠的黑曜石采购需要昂贵的校准标准和广泛的地质参考资料收集以及统计处理经验。在南高加索- -地球上黑曜石最丰富的地区之一- -这种要求的结合往往限制了采购研究,因为很少有项目具有涵盖所有已知黑曜石来源的地质参考资料集。为了测试另一种方法,我们使用便携式x射线荧光(pXRF)对地质标本进行了“开源”分析,对传统方法进行了三个关键更改:(1)商业上可用的校准标准被可借调的皮博迪-耶鲁参考黑曜石(PYRO)集取代;(2)全面的地质参考收集被已发布的共识值数据集(Frahm, 2023a, 2023b)取代;(3)统计软件包的处理被两个半自动化的机器学习工作流程取代。为了比较,我们使用JMP 17.2统计软件进行目视分类。此外,我们提出了一种新的方法来评估校准,它简化了比较,我们称之为对称差分比(SDR)。该可行性研究的结果表明,这种“开源”工作流是可靠的,但目前仅与肉眼分类相结合。当共识值与机器学习解相结合时,分类结果并不令人满意。我们的替代“开源”工作流程最令人鼓舞的方面是,它可以在不实际测量参考集合的情况下进行正确的源识别,因此克服了迄今为止严重限制考古研究的障碍。我们预计,机器学习的快速发展也将很快改善工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
8.70%
发文量
43
期刊介绍: The Journal of Archaeological Method and Theory, the leading journal in its field,  presents original articles that address method- or theory-focused issues of current archaeological interest and represent significant explorations on the cutting edge of the discipline.   The journal also welcomes topical syntheses that critically assess and integrate research on a specific subject in archaeological method or theory, as well as examinations of the history of archaeology.    Written by experts, the articles benefit an international audience of archaeologists, students of archaeology, and practitioners of closely related disciplines.  Specific topics covered in recent issues include:  the use of nitche construction theory in archaeology,  new developments in the use of soil chemistry in archaeological interpretation, and a model for the prehistoric development of clothing.  The Journal''s distinguished Editorial Board includes archaeologists with worldwide archaeological knowledge (the Americas, Asia and the Pacific, Europe, and Africa), and expertise in a wide range of methodological and theoretical issues.  Rated ''A'' in the European Reference Index for the Humanities (ERIH) Journal of Archaeological Method and Theory is rated ''A'' in the ERIH, a new reference index that aims to help evenly access the scientific quality of Humanities research output. For more information visit: http://www.esf.org/research-areas/humanities/activities/research-infrastructures.html Rated ''A'' in the Australian Research Council Humanities and Creative Arts Journal List.  For more information, visit: http://www.arc.gov.au/era/journal_list_dev.htm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信