Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Kang Zhang, Hailong Yu, Lingkui Zhang, Yacong Cao, Xing Li, Yajie Mei, Xiang Wang, Zhenghai Zhang, Tianyao Li, Yuan Jin, Wenyuan Fan, Congcong Guan, Yihan Wang, Daiyuan Zhou, Shumin Chen, Huamao Wu, Lihao Wang, Feng Cheng
{"title":"Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers","authors":"Kang Zhang, Hailong Yu, Lingkui Zhang, Yacong Cao, Xing Li, Yajie Mei, Xiang Wang, Zhenghai Zhang, Tianyao Li, Yuan Jin, Wenyuan Fan, Congcong Guan, Yihan Wang, Daiyuan Zhou, Shumin Chen, Huamao Wu, Lihao Wang, Feng Cheng","doi":"10.1038/s41477-025-01905-1","DOIUrl":null,"url":null,"abstract":"<p>Pepper (<i>Capsicum</i> spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality <i>Capsicum</i> genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species. We reconstructed the ancestral karyotype and inferred the evolutionary trajectory of peppers. The expanded and variable genome sizes were attributed to differential transposable element accumulations, which shaped 3D chromatin architecture and introduced mutations associated with traits such as fruit orientation and colour. Using a chromatin accessibility atlas of <i>Capsicum</i>, we highlight the influence of transposable elements on regulatory element evolution. Furthermore, by constructing a haploblock map of 124 pepper core germplasms, we uncover frequent introgressions that facilitate the formation of sweet blocky pepper and the acquisition of important traits such as resistance to pepper mild mottle virus. These findings on the genomic and functional evolution of <i>Capsicum</i> will benefit pepper breeding.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"2 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-01905-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species. We reconstructed the ancestral karyotype and inferred the evolutionary trajectory of peppers. The expanded and variable genome sizes were attributed to differential transposable element accumulations, which shaped 3D chromatin architecture and introduced mutations associated with traits such as fruit orientation and colour. Using a chromatin accessibility atlas of Capsicum, we highlight the influence of transposable elements on regulatory element evolution. Furthermore, by constructing a haploblock map of 124 pepper core germplasms, we uncover frequent introgressions that facilitate the formation of sweet blocky pepper and the acquisition of important traits such as resistance to pepper mild mottle virus. These findings on the genomic and functional evolution of Capsicum will benefit pepper breeding.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信