Gaétan Sauter, Stefano C. Fabbri, Corine Frischknecht, Flavio S. Anselmetti, Katrina Kremer
{"title":"A systemic approach to managing uncertainties in repetitive multibeam bathymetric surveys","authors":"Gaétan Sauter, Stefano C. Fabbri, Corine Frischknecht, Flavio S. Anselmetti, Katrina Kremer","doi":"10.1016/j.envsoft.2025.106333","DOIUrl":null,"url":null,"abstract":"Multibeam Echo Sounder systems have enhanced the precision of modern bathymetric mapping, enabling the creation of high-resolution digital bathymetry models that characterise ocean and lake floors. However, the inferred models contain uncertainties that necessitate consideration, especially when conducting quantitative temporal comparisons. By exploring the results of two bathymetric surveys targeting a lacustrine delta, this study examines how geomorphological changes can effectively be interpreted through repetitive multi-temporal bathymetric surveys. We propose to use a workflow for Geographic Information System aiming at providing the basis for diverse studies that will implement bathymetric difference maps, also ensuring consistency. The proposed methodology incorporates the use of confidence intervals, based on the estimated uncertainties. The groundwork for interpretation relies on: (i) qualitative display using multivariate choropleth, (ii) quantitative assessment with the calculation of volumes of raw changes in cubic metres (m³), along with confidence intervals (±m³) and (iii) volumetric histograms accompanied with error bars.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"120 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2025.106333","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Multibeam Echo Sounder systems have enhanced the precision of modern bathymetric mapping, enabling the creation of high-resolution digital bathymetry models that characterise ocean and lake floors. However, the inferred models contain uncertainties that necessitate consideration, especially when conducting quantitative temporal comparisons. By exploring the results of two bathymetric surveys targeting a lacustrine delta, this study examines how geomorphological changes can effectively be interpreted through repetitive multi-temporal bathymetric surveys. We propose to use a workflow for Geographic Information System aiming at providing the basis for diverse studies that will implement bathymetric difference maps, also ensuring consistency. The proposed methodology incorporates the use of confidence intervals, based on the estimated uncertainties. The groundwork for interpretation relies on: (i) qualitative display using multivariate choropleth, (ii) quantitative assessment with the calculation of volumes of raw changes in cubic metres (m³), along with confidence intervals (±m³) and (iii) volumetric histograms accompanied with error bars.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.