{"title":"Effect of stress waves on fault slip using photoelastic analysis and numerical simulation","authors":"N.B. Zhang, Z.X. Zhang, R.L. Shan, Q.X. Qi, S.K. Zhao, Y.S. Guo, Y.Z. Li","doi":"10.1016/j.ijrmms.2025.106026","DOIUrl":null,"url":null,"abstract":"In coal mines, fault slips are often affected by stress waves originated from rock fracture during mining, but the effect of stress waves on a fault slip is still unclear. To understand such an effect, photoelasticity experiments and numerical simulation were carried out in this study, based on the thrust fault F16 in the Yima coal field, China. Three factors including stress wave sources, stress wave energy, and static friction coefficients of the fault were considered. The results show that: (1) Sources of stress waves located in the lower strata can more likely trigger the fault slip. (2) The curves of sliding displacement, strain ratio <mml:math altimg=\"si1.svg\"><mml:mrow><mml:msub><mml:mi>r</mml:mi><mml:mi>ε</mml:mi></mml:msub></mml:mrow></mml:math> (shear strain to normal strain), and stress ratio <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>r</mml:mi><mml:mi>σ</mml:mi></mml:msub></mml:mrow></mml:math> (shear stress to normal stress) of the upper fault are similar to “U” shape with increasing stress wave energy. The rock failure in the upper fault could be the reason of the rising curves when the stress wave energy is high. (3) Normal and shear stresses have different responses to the perturbation of stress waves. (4) More friction energy but less sliding displacement is induced by stress waves if the static friction coefficient of the fault is large. (5) The Mohr's circle of the fault can reach the Coulomb failure threshold if the energy of stress waves is high enough, resulting in fault slip.","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"6 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijrmms.2025.106026","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In coal mines, fault slips are often affected by stress waves originated from rock fracture during mining, but the effect of stress waves on a fault slip is still unclear. To understand such an effect, photoelasticity experiments and numerical simulation were carried out in this study, based on the thrust fault F16 in the Yima coal field, China. Three factors including stress wave sources, stress wave energy, and static friction coefficients of the fault were considered. The results show that: (1) Sources of stress waves located in the lower strata can more likely trigger the fault slip. (2) The curves of sliding displacement, strain ratio rε (shear strain to normal strain), and stress ratio rσ (shear stress to normal stress) of the upper fault are similar to “U” shape with increasing stress wave energy. The rock failure in the upper fault could be the reason of the rising curves when the stress wave energy is high. (3) Normal and shear stresses have different responses to the perturbation of stress waves. (4) More friction energy but less sliding displacement is induced by stress waves if the static friction coefficient of the fault is large. (5) The Mohr's circle of the fault can reach the Coulomb failure threshold if the energy of stress waves is high enough, resulting in fault slip.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.