Meso-mechanical mechanism of ordered mica alignment on the progressive failure process of granite under different lateral stress directions

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Chen Fan , Xia-Ting Feng , Jun Zhao , Cheng-Xiang Yang , Meng-Fei Jiang
{"title":"Meso-mechanical mechanism of ordered mica alignment on the progressive failure process of granite under different lateral stress directions","authors":"Chen Fan ,&nbsp;Xia-Ting Feng ,&nbsp;Jun Zhao ,&nbsp;Cheng-Xiang Yang ,&nbsp;Meng-Fei Jiang","doi":"10.1016/j.ijrmms.2025.106037","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately understanding the mechanical properties of surrounding rock is crucial for minimizing the risk of surrounding rock instability. In a deep TBM tunnel, mica minerals in the surrounding rock exhibit an intermittently oriented alignment, which is considered one potential cause of time-delayed failures. Under the same true triaxial stress, creep tests were conducted on granite with different strike angles <em>ω</em> when dip angle <em>β</em> = 50°, to investigate the impact of ordered mica alignment under different lateral stress directions (<em>σ</em><sub>2</sub> ≠ <em>σ</em><sub>3</sub>). Results show that the strike angle <em>ω</em> also have a significant impact on the progressive failure process of granite under true triaxial stress. In the multi-stage creep tests, the final failure strength of granite at <em>ω</em> = 0° was approximately 73 % higher than that at <em>ω</em> = 90°. Brazilian splitting tests also confirm the crack development at mica tips under different mica orientations, with the maximum difference in tensile strength reaching 37 %. The essence of the impact of mica orientation on rock failure process lies in the promotion of crack initiation and coalescence under high stress. Under a moderate dip angle <em>β</em>, relative sliding between mica cleavage planes is easier when <em>ω</em> = 60° or 90°, leading to crack initiation at mica tips and significantly compromising the load-bearing structure of granite. Based on fracture mechanics, this paper also provides theoretical explanations for the differences in mesoscopic fracturing process of granite with different mica orientations. In surrounding rock stability analyses, it is crucial to consider the complex combinations of rock microstructure and local stress state in the field, which would cause significant variations in surrounding rock stability.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"186 ","pages":"Article 106037"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000140","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately understanding the mechanical properties of surrounding rock is crucial for minimizing the risk of surrounding rock instability. In a deep TBM tunnel, mica minerals in the surrounding rock exhibit an intermittently oriented alignment, which is considered one potential cause of time-delayed failures. Under the same true triaxial stress, creep tests were conducted on granite with different strike angles ω when dip angle β = 50°, to investigate the impact of ordered mica alignment under different lateral stress directions (σ2σ3). Results show that the strike angle ω also have a significant impact on the progressive failure process of granite under true triaxial stress. In the multi-stage creep tests, the final failure strength of granite at ω = 0° was approximately 73 % higher than that at ω = 90°. Brazilian splitting tests also confirm the crack development at mica tips under different mica orientations, with the maximum difference in tensile strength reaching 37 %. The essence of the impact of mica orientation on rock failure process lies in the promotion of crack initiation and coalescence under high stress. Under a moderate dip angle β, relative sliding between mica cleavage planes is easier when ω = 60° or 90°, leading to crack initiation at mica tips and significantly compromising the load-bearing structure of granite. Based on fracture mechanics, this paper also provides theoretical explanations for the differences in mesoscopic fracturing process of granite with different mica orientations. In surrounding rock stability analyses, it is crucial to consider the complex combinations of rock microstructure and local stress state in the field, which would cause significant variations in surrounding rock stability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信