{"title":"Exploring deformation mechanisms in a refractory high entropy alloy (MoNbTaW)","authors":"T.L. Dora, Sandeep Kumar Singh, Radha Raman Mishra, He Yu, Nitin Kishore Rawat, Akarsh Verma","doi":"10.1016/j.ijmecsci.2025.110000","DOIUrl":null,"url":null,"abstract":"Understanding the deformation behaviour of refractory high-entropy alloy (rHEA) at elevated temperatures are crucial due to their potential for high-temperature applications. In this study, molecular dynamics simulations were employed using a highly accurate machine learning- based forcefield to investigate the deformation behaviour of MoNbTaW rHEA under uniaxial tensile and compressive loading. Additionally, the dependency of deformation behaviour on the applied strain rates (5e8, 1e9, 5e9 and 1e10 <ce:italic>s</ce:italic><ce:sup loc=\"post\">−1</ce:sup>) and temperatures (300, 800, 1000 and 1200 K) was investigated. The yield strength of MoNbTaW rHEA increased by two-fold during compressive loading when compared to tensile loading. During tensile deformation, the BCC-FCC-other atom transition resulted in the formation of stripe-like twinning along the {112} plane. On the contrary, during compressive loading, BCC directly transitioned into other atoms, forming twinning that later acted as the nucleation sites for dislocations. These findings further demonstrate that the deformation mechanism during tensile loading is governed by the twinning mechanism, whereas during compressive loading, dislocation-induced plasticity plays a vital role.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"48 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2025.110000","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the deformation behaviour of refractory high-entropy alloy (rHEA) at elevated temperatures are crucial due to their potential for high-temperature applications. In this study, molecular dynamics simulations were employed using a highly accurate machine learning- based forcefield to investigate the deformation behaviour of MoNbTaW rHEA under uniaxial tensile and compressive loading. Additionally, the dependency of deformation behaviour on the applied strain rates (5e8, 1e9, 5e9 and 1e10 s−1) and temperatures (300, 800, 1000 and 1200 K) was investigated. The yield strength of MoNbTaW rHEA increased by two-fold during compressive loading when compared to tensile loading. During tensile deformation, the BCC-FCC-other atom transition resulted in the formation of stripe-like twinning along the {112} plane. On the contrary, during compressive loading, BCC directly transitioned into other atoms, forming twinning that later acted as the nucleation sites for dislocations. These findings further demonstrate that the deformation mechanism during tensile loading is governed by the twinning mechanism, whereas during compressive loading, dislocation-induced plasticity plays a vital role.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.