Frank Brückerhoff-Plückelmann, Tim Buskasper, Julius Römer, Linus Krämer, Bilal Malik, Liam McRae, Linus Kürpick, Simon Palitza, Carsten Schuck, Wolfram Pernice
{"title":"General design flow for waveguide Bragg gratings","authors":"Frank Brückerhoff-Plückelmann, Tim Buskasper, Julius Römer, Linus Krämer, Bilal Malik, Liam McRae, Linus Kürpick, Simon Palitza, Carsten Schuck, Wolfram Pernice","doi":"10.1515/nanoph-2024-0498","DOIUrl":null,"url":null,"abstract":"Bragg gratings are crucial components in passive photonic signal processing, with wide-ranging applications including biosensing, pulse compression, photonic computing, and addressing. However, the design of integrated waveguide Bragg gratings (WBGs) for arbitrary wavelengths presents significant challenges, especially when dealing with highly asymmetric layer stacks and large refractive index contrasts. Convenient approximations used for fiber Bragg gratings generally break down in these cases, resulting in nontrivial design challenges. In this work, we introduce a general simulation and design framework for WBGs, which combines coupled mode theory with three-dimensional finite-element method eigenfrequency computations. This approach allows for precise design and optimization of WBGs across a broad range of device layer stacks. The design flow is applicable to further layer stacks across nearly all wavelengths of interest, given that the coupling between the forward and backward propagating mode is dominant.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"36 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0498","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bragg gratings are crucial components in passive photonic signal processing, with wide-ranging applications including biosensing, pulse compression, photonic computing, and addressing. However, the design of integrated waveguide Bragg gratings (WBGs) for arbitrary wavelengths presents significant challenges, especially when dealing with highly asymmetric layer stacks and large refractive index contrasts. Convenient approximations used for fiber Bragg gratings generally break down in these cases, resulting in nontrivial design challenges. In this work, we introduce a general simulation and design framework for WBGs, which combines coupled mode theory with three-dimensional finite-element method eigenfrequency computations. This approach allows for precise design and optimization of WBGs across a broad range of device layer stacks. The design flow is applicable to further layer stacks across nearly all wavelengths of interest, given that the coupling between the forward and backward propagating mode is dominant.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.