{"title":"Asiaticoside-nitric oxide synergistically accelerate diabetic wound healing by regulating key metabolites and SRC/STAT3 signaling","authors":"Xingrui Mu, Jitao Chen, Huan Zhu, Junyu Deng, Xingqian Wu, Wenjie He, Penghui Ye, Rifang Gu, Youzhi Wu, Felicity Han, Xuqiang Nie","doi":"10.1093/burnst/tkaf009","DOIUrl":null,"url":null,"abstract":"Background Diabetic wounds pose significant clinical challenges due to impaired healing processes, often resulting in chronic, non-healing ulcers. Asiaticoside (AC), a natural triterpene derivative from Centella asiatica, has demonstrated notable anti-inflammatory and wound-healing properties. However, the synergistic effects of nitric oxide (NO)—a recognized promoter of wound healing—combined with AC in treating diabetic wounds remain inadequately explored. Methods Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was utilized to identify differential metabolites and dysregulated metabolic pathways associated with diabetic wounds. Molecular docking analyses were conducted to confirm the binding affinity of AC to key therapeutic targets. The effects of Asiaticoside-nitric oxide hydrogel (ACNO) on gene and protein expression were evaluated using RT-qPCR and western blotting. In vitro experiments using SRC agonists and inhibitors were performed to investigate the impact of ACNO therapy on the expression of SRC, STAT3, and other proteins in HaCaT cells. Results Metabolomic profiling revealed that diabetic wounds in mice exhibited marked metabolic dysregulation, which was attenuated by ACNO treatment. Key metabolites modulated by ACNO included mandelic acid, lactic acid, and 3-hydroxyisovaleric acid. The primary metabolic pathways involved were methyl histidine metabolism and the malate–aspartate shuttle. Immunofluorescence staining confirmed that ACNO therapy enhanced angiogenesis, promoted cellular proliferation, and facilitated diabetic wound closure. RT–qPCR data demonstrated that ACNO regulated the transcription of critical genes (SRC, STAT3, EGFR, and VEGFA). Notably, ACNO attenuated SRC/STAT3 pathway activation while concurrently upregulating EGFR and VEGFA expression. Conclusions These findings emphasize the therapeutic potential of ACNO hydrogel in diabetic wound healing through the modulation of metabolic pathways and the SRC/STAT3 signaling axis. By correlating altered metabolites with molecular targets, this study elucidates the pharmacodynamic foundation for ACNO’s pre-clinical application and provides valuable insights into the development of targeted therapies for diabetic wound management.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"2 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkaf009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background Diabetic wounds pose significant clinical challenges due to impaired healing processes, often resulting in chronic, non-healing ulcers. Asiaticoside (AC), a natural triterpene derivative from Centella asiatica, has demonstrated notable anti-inflammatory and wound-healing properties. However, the synergistic effects of nitric oxide (NO)—a recognized promoter of wound healing—combined with AC in treating diabetic wounds remain inadequately explored. Methods Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was utilized to identify differential metabolites and dysregulated metabolic pathways associated with diabetic wounds. Molecular docking analyses were conducted to confirm the binding affinity of AC to key therapeutic targets. The effects of Asiaticoside-nitric oxide hydrogel (ACNO) on gene and protein expression were evaluated using RT-qPCR and western blotting. In vitro experiments using SRC agonists and inhibitors were performed to investigate the impact of ACNO therapy on the expression of SRC, STAT3, and other proteins in HaCaT cells. Results Metabolomic profiling revealed that diabetic wounds in mice exhibited marked metabolic dysregulation, which was attenuated by ACNO treatment. Key metabolites modulated by ACNO included mandelic acid, lactic acid, and 3-hydroxyisovaleric acid. The primary metabolic pathways involved were methyl histidine metabolism and the malate–aspartate shuttle. Immunofluorescence staining confirmed that ACNO therapy enhanced angiogenesis, promoted cellular proliferation, and facilitated diabetic wound closure. RT–qPCR data demonstrated that ACNO regulated the transcription of critical genes (SRC, STAT3, EGFR, and VEGFA). Notably, ACNO attenuated SRC/STAT3 pathway activation while concurrently upregulating EGFR and VEGFA expression. Conclusions These findings emphasize the therapeutic potential of ACNO hydrogel in diabetic wound healing through the modulation of metabolic pathways and the SRC/STAT3 signaling axis. By correlating altered metabolites with molecular targets, this study elucidates the pharmacodynamic foundation for ACNO’s pre-clinical application and provides valuable insights into the development of targeted therapies for diabetic wound management.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.