Santiago A. Ruiz-Alias, Aitor Marcos-Blanco, Iván Fernández-Navarrete, Alejandro Pérez-Castilla, Felipe García-Pinillos
{"title":"The 9/3 Min Running Test: A Simple and Practical Approach to Estimate the Critical and Maximal Aerobic Power","authors":"Santiago A. Ruiz-Alias, Aitor Marcos-Blanco, Iván Fernández-Navarrete, Alejandro Pérez-Castilla, Felipe García-Pinillos","doi":"10.1002/ejsc.12254","DOIUrl":null,"url":null,"abstract":"<p>This study aims to determine the validity of the linear critical power (CP) and Peronnet models to estimate the power output associated with the second ventilatory threshold (VT2) and the maximal aerobic power (MAP) using two-time trials. Nineteen recreational runners (10 males and 9 females and maximum oxygen uptake: 53.0 ± 4.7 mL/kg/min) performed a graded exercise test (GXT) to determine the VT2 and MAP. On a second test, athletes performed two-time trials of 9 and 3 min interspaced by 30 min. The CP was determined from the linear CP model and compared with the power output associated with the VT2. The MAP was determined from the linear Peronnet model, established at 7 min, and compared with the MAP determined in the GXT. The CP model was valid for determining the VT2, regardless of sex (<i>p</i> = 0.130; 9/3 vs. GXT: 3.5 [−1.1 to 8.2] W). The MAP was overestimated (<i>p</i> = 0.015) specifically in males (9/3 vs. GXT: 9.2 [3.3 to 15.1] W) rather than in females (<i>p</i> = 9/3 vs. GXT: 1.7 [−4.4 to 8.0] W). Therefore, MAP estimates were determined introducing the CP and W' parameters to a stepwise multiple linear regression analysis. For females, the CP was the unique significant predictor of MAP (<i>p</i> < 0.001) explaining 96.7% of the variance. In males, both CP and W' were significant predictors of MAP (<i>p</i> < 0.001) explaining 97.7% of the variance. Practitioners can validly estimate the VT2 and MAP through a practical testing protocol in both male and female recreational runners.</p>","PeriodicalId":93999,"journal":{"name":"European journal of sport science","volume":"25 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of sport science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejsc.12254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to determine the validity of the linear critical power (CP) and Peronnet models to estimate the power output associated with the second ventilatory threshold (VT2) and the maximal aerobic power (MAP) using two-time trials. Nineteen recreational runners (10 males and 9 females and maximum oxygen uptake: 53.0 ± 4.7 mL/kg/min) performed a graded exercise test (GXT) to determine the VT2 and MAP. On a second test, athletes performed two-time trials of 9 and 3 min interspaced by 30 min. The CP was determined from the linear CP model and compared with the power output associated with the VT2. The MAP was determined from the linear Peronnet model, established at 7 min, and compared with the MAP determined in the GXT. The CP model was valid for determining the VT2, regardless of sex (p = 0.130; 9/3 vs. GXT: 3.5 [−1.1 to 8.2] W). The MAP was overestimated (p = 0.015) specifically in males (9/3 vs. GXT: 9.2 [3.3 to 15.1] W) rather than in females (p = 9/3 vs. GXT: 1.7 [−4.4 to 8.0] W). Therefore, MAP estimates were determined introducing the CP and W' parameters to a stepwise multiple linear regression analysis. For females, the CP was the unique significant predictor of MAP (p < 0.001) explaining 96.7% of the variance. In males, both CP and W' were significant predictors of MAP (p < 0.001) explaining 97.7% of the variance. Practitioners can validly estimate the VT2 and MAP through a practical testing protocol in both male and female recreational runners.