“Having providers who are trained and have empathy is life-saving”: Improving primary care communication through thematic analysis with ChatGPT and human expertise

Michelle A. Stage , Mackenzie M. Creamer , Mollie A. Ruben
{"title":"“Having providers who are trained and have empathy is life-saving”: Improving primary care communication through thematic analysis with ChatGPT and human expertise","authors":"Michelle A. Stage ,&nbsp;Mackenzie M. Creamer ,&nbsp;Mollie A. Ruben","doi":"10.1016/j.pecinn.2024.100371","DOIUrl":null,"url":null,"abstract":"<div><div>In the rapidly evolving field of healthcare research, Artificial Intelligence (AI) and conversational models like ChatGPT (Conversational Generative Pre-trained Transformer) offer promising tools for data analysis. The aim of this study was to: 1) apply ChatGPT methodology alongside human coding to analyze qualitative health services feedback, and 2) examine healthcare experiences among lesbian, gay, bisexual, transgender, and queer (LGBTQ+) patients (<em>N</em> = 41) to inform future intervention. The hybrid approach facilitated the identification of themes related to affirming care practices, provider education, communicative challenges and successes, and environmental cues. While ChatGPT accelerated the coding process, human oversight remained crucial for ensuring data integrity and context accuracy. This hybrid method promises significant improvements in analyzing patient feedback, providing actionable insights that could enhance patient-provider interactions and care for diverse populations.</div><div>Innovation: This study is the first to combine ChatGPT with human coding for rapid thematic analysis of LGBTQ+ patient primary care experiences.</div></div>","PeriodicalId":74407,"journal":{"name":"PEC innovation","volume":"6 ","pages":"Article 100371"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PEC innovation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772628224001195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving field of healthcare research, Artificial Intelligence (AI) and conversational models like ChatGPT (Conversational Generative Pre-trained Transformer) offer promising tools for data analysis. The aim of this study was to: 1) apply ChatGPT methodology alongside human coding to analyze qualitative health services feedback, and 2) examine healthcare experiences among lesbian, gay, bisexual, transgender, and queer (LGBTQ+) patients (N = 41) to inform future intervention. The hybrid approach facilitated the identification of themes related to affirming care practices, provider education, communicative challenges and successes, and environmental cues. While ChatGPT accelerated the coding process, human oversight remained crucial for ensuring data integrity and context accuracy. This hybrid method promises significant improvements in analyzing patient feedback, providing actionable insights that could enhance patient-provider interactions and care for diverse populations.
Innovation: This study is the first to combine ChatGPT with human coding for rapid thematic analysis of LGBTQ+ patient primary care experiences.

Abstract Image

“拥有受过培训、有同理心的服务提供者可以挽救生命”:通过ChatGPT和人类专业知识的主题分析改善初级保健沟通。
在快速发展的医疗保健研究领域,人工智能(AI)和会话模型(如ChatGPT(会话生成预训练转换器))为数据分析提供了有前途的工具。本研究的目的是:1)应用ChatGPT方法和人类编码来分析定性的健康服务反馈,2)调查女同性恋、男同性恋、双性恋、变性人和酷儿(LGBTQ+)患者(N = 41)的医疗保健经历,为未来的干预提供信息。混合方法有助于确定与确认护理实践、提供者教育、沟通挑战和成功以及环境线索相关的主题。虽然ChatGPT加速了编码过程,但人为监督对于确保数据完整性和上下文准确性仍然至关重要。这种混合方法有望在分析患者反馈方面取得重大进展,提供可操作的见解,可以增强患者与提供者的互动和对不同人群的护理。创新:该研究首次将ChatGPT与人类编码结合起来,对LGBTQ+患者的初级保健体验进行快速主题分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PEC innovation
PEC innovation Medicine and Dentistry (General)
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
147 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信