Aspartic acid unveils as antibiofilm agent and tobramycin adjuvant against mucoid and small colony variants of Pseudomonas aeruginosa isolates in vitro within cystic fibrosis airway mucus

IF 5.9 Q1 MICROBIOLOGY
Rosana Monteiro , Ana Margarida Sousa , Maria Olívia Pereira
{"title":"Aspartic acid unveils as antibiofilm agent and tobramycin adjuvant against mucoid and small colony variants of Pseudomonas aeruginosa isolates in vitro within cystic fibrosis airway mucus","authors":"Rosana Monteiro ,&nbsp;Ana Margarida Sousa ,&nbsp;Maria Olívia Pereira","doi":"10.1016/j.bioflm.2024.100252","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of <em>Pseudomonas aeruginosa</em> biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against <em>P. aeruginosa</em> biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended <em>P. aeruginosa</em> biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations. Our findings showed that aspartic acid inhibited planktonic <em>P. aeruginosa</em> without affecting its viability and prevented biofilm formation by hindering bacterial adhesion or interfering with EPS production, depending on the experimental conditions. In CF mucus, aspartic acid significantly reduced bacterial growth, with the highest inhibition observed when combined with tobramycin, showing notable effects against the mucoid and tolerant SCV strain. Despite these reductions, <em>P. aeruginosa</em> repopulated the mucus within 24 h of stress withdrawal. Additional strategies, including delayed tobramycin application and a second dose of co-application of aspartic acid and tobramycin were explored to address bacterial survival and recovery. Although none of the strategies eradicated <em>P. aeruginosa</em>, the second co-application resulted in slower bacterial recovery rates.</div><div>In conclusion, this study highlighted aspartic acid as an effective antibiofilm agent and demonstrated for the first time its potential as an adjuvant to tobramycin. The combined use of aspartic acid and tobramycin offers a promising advancement in CF therapeutics, particularly against <em>P. aeruginosa</em> biofilms formed by mucoid and SCV strains, mitigating their antibiotic resistance.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100252"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207524000777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of Pseudomonas aeruginosa biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against P. aeruginosa biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended P. aeruginosa biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations. Our findings showed that aspartic acid inhibited planktonic P. aeruginosa without affecting its viability and prevented biofilm formation by hindering bacterial adhesion or interfering with EPS production, depending on the experimental conditions. In CF mucus, aspartic acid significantly reduced bacterial growth, with the highest inhibition observed when combined with tobramycin, showing notable effects against the mucoid and tolerant SCV strain. Despite these reductions, P. aeruginosa repopulated the mucus within 24 h of stress withdrawal. Additional strategies, including delayed tobramycin application and a second dose of co-application of aspartic acid and tobramycin were explored to address bacterial survival and recovery. Although none of the strategies eradicated P. aeruginosa, the second co-application resulted in slower bacterial recovery rates.
In conclusion, this study highlighted aspartic acid as an effective antibiofilm agent and demonstrated for the first time its potential as an adjuvant to tobramycin. The combined use of aspartic acid and tobramycin offers a promising advancement in CF therapeutics, particularly against P. aeruginosa biofilms formed by mucoid and SCV strains, mitigating their antibiotic resistance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信