Bipartite interference and air pollution transport: estimating health effects of power plant interventions.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Corwin Zigler, Vera Liu, Fabrizia Mealli, Laura Forastiere
{"title":"Bipartite interference and air pollution transport: estimating health effects of power plant interventions.","authors":"Corwin Zigler, Vera Liu, Fabrizia Mealli, Laura Forastiere","doi":"10.1093/biostatistics/kxae051","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating air quality interventions is confronted with the challenge of interference since interventions at a particular pollution source likely impact air quality and health at distant locations, and air quality and health at any given location are likely impacted by interventions at many sources. The structure of interference in this context is dictated by complex atmospheric processes governing how pollution emitted from a particular source is transformed and transported across space and can be cast with a bipartite structure reflecting the two distinct types of units: (i) interventional units on which treatments are applied or withheld to change pollution emissions; and (ii) outcome units on which outcomes of primary interest are measured. We propose new estimands for bipartite causal inference with interference that construe two components of treatment: a \"key-associated\" (or \"individual\") treatment and an \"upwind\" (or \"neighborhood\") treatment. Estimation is carried out using a covariate adjustment approach based on a joint propensity score. A reduced-complexity atmospheric model characterizes the structure of the interference network by modeling the movement of air parcels through time and space. The new methods are deployed to evaluate the effectiveness of installing flue-gas desulfurization scrubbers on 472 coal-burning power plants (the interventional units) in reducing Medicare hospitalizations among 21,577,552 Medicare beneficiaries residing across 25,553 ZIP codes in the United States (the outcome units).</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating air quality interventions is confronted with the challenge of interference since interventions at a particular pollution source likely impact air quality and health at distant locations, and air quality and health at any given location are likely impacted by interventions at many sources. The structure of interference in this context is dictated by complex atmospheric processes governing how pollution emitted from a particular source is transformed and transported across space and can be cast with a bipartite structure reflecting the two distinct types of units: (i) interventional units on which treatments are applied or withheld to change pollution emissions; and (ii) outcome units on which outcomes of primary interest are measured. We propose new estimands for bipartite causal inference with interference that construe two components of treatment: a "key-associated" (or "individual") treatment and an "upwind" (or "neighborhood") treatment. Estimation is carried out using a covariate adjustment approach based on a joint propensity score. A reduced-complexity atmospheric model characterizes the structure of the interference network by modeling the movement of air parcels through time and space. The new methods are deployed to evaluate the effectiveness of installing flue-gas desulfurization scrubbers on 472 coal-burning power plants (the interventional units) in reducing Medicare hospitalizations among 21,577,552 Medicare beneficiaries residing across 25,553 ZIP codes in the United States (the outcome units).

三方干扰与空气污染运输:电厂干预对健康影响的估计。
评估空气质量干预措施面临着干扰的挑战,因为针对特定污染源的干预措施可能会影响遥远地点的空气质量和健康,而任何特定地点的空气质量和健康可能会受到多个来源的干预措施的影响。在这种情况下,干扰的结构是由复杂的大气过程决定的,这些大气过程控制着特定来源排放的污染如何在空间中转化和运输,并且可以用反映两种不同类型单元的两部分结构来表达:(i)对其施加或不施加处理以改变污染排放的干预单元;(ii)衡量主要利益的结果的结果单位。我们提出了新的估计与干扰的双部因果推理,解释两个组成部分的处理:一个“钥匙相关”(或“个人”)处理和一个“逆风”(或“邻居”)处理。使用基于联合倾向得分的协变量调整方法进行估计。一个简化的大气模型通过模拟空气包裹在时间和空间上的运动来表征干扰网络的结构。新方法用于评估在472个燃煤电厂(介入单位)安装烟气脱硫洗涤器在减少居住在美国25,553个邮政编码(结果单位)的21,577,552名医疗保险受益人的医疗保险住院率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信