MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

IF 2.3 4区 医学 Q3 ENVIRONMENTAL SCIENCES
Xiaodie Zhou, Yue Yang, Canqun Yan, Shuidong Feng, Chunhua Zhan
{"title":"MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.","authors":"Xiaodie Zhou, Yue Yang, Canqun Yan, Shuidong Feng, Chunhua Zhan","doi":"10.1080/15287394.2024.2443227","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage. Male C57BL/6 mice were treated with either MC-LR alone or concurrently with dextran-sulfate sodium (DSS). Mice were divided into 4 groups (1): PBS gavage (control, CT) (2); 200 μg/kg MC-LR gavage (MC-LR) (3); 3% DSS Drinking Water (DSS); and (4) 3% DSS Drinking Water + 200 μg/kg MC-LR gavage (DSS + MC-LR). The mice in each experimental group exhibited reduced body weight, shortened colon length, increased disease activity index (DAI) score, a disrupted intestinal barrier, and elevated levels of proinflammatory cytokines compared to control. Compared to the group treated with MC-LR alone, colitis symptoms were exacerbated following combined exposure to both DSS and MC-LR. Subsequent experiments confirmed that MC-LR or DSS increased protein phosphorylation levels of Janus Kinase1 (JAK1) and Signal Transducer and Activator of Transcription3 (STAT3). Compared to group treated with MC-LR alone, the combined treatment of DSS and MC-LR also significantly upregulated the expression of related proteins. In conclusion, our study indicates that MC-LR-induced colitis involves activation of JAK1/STAT3 signaling pathway and that MC-LR exacerbates DSS-induced colitis through the same pathway.</p>","PeriodicalId":54758,"journal":{"name":"Journal of Toxicology and Environmental Health-Part A-Current Issues","volume":" ","pages":"1-11"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part A-Current Issues","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15287394.2024.2443227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage. Male C57BL/6 mice were treated with either MC-LR alone or concurrently with dextran-sulfate sodium (DSS). Mice were divided into 4 groups (1): PBS gavage (control, CT) (2); 200 μg/kg MC-LR gavage (MC-LR) (3); 3% DSS Drinking Water (DSS); and (4) 3% DSS Drinking Water + 200 μg/kg MC-LR gavage (DSS + MC-LR). The mice in each experimental group exhibited reduced body weight, shortened colon length, increased disease activity index (DAI) score, a disrupted intestinal barrier, and elevated levels of proinflammatory cytokines compared to control. Compared to the group treated with MC-LR alone, colitis symptoms were exacerbated following combined exposure to both DSS and MC-LR. Subsequent experiments confirmed that MC-LR or DSS increased protein phosphorylation levels of Janus Kinase1 (JAK1) and Signal Transducer and Activator of Transcription3 (STAT3). Compared to group treated with MC-LR alone, the combined treatment of DSS and MC-LR also significantly upregulated the expression of related proteins. In conclusion, our study indicates that MC-LR-induced colitis involves activation of JAK1/STAT3 signaling pathway and that MC-LR exacerbates DSS-induced colitis through the same pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
19.20%
发文量
46
审稿时长
8-16 weeks
期刊介绍: The Journal of Toxicology and Environmental Health, Part A , Current Issues is an authoritative journal that features strictly refereed original research in the field of environmental sciences, public and occupational health, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信