An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Water Research X Pub Date : 2025-01-02 eCollection Date: 2025-05-01 DOI:10.1016/j.wroa.2025.100301
Xiaodi Li, Mengxue Sun, Bo Wang, Wei Zeng, Yongzhen Peng
{"title":"An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.","authors":"Xiaodi Li, Mengxue Sun, Bo Wang, Wei Zeng, Yongzhen Peng","doi":"10.1016/j.wroa.2025.100301","DOIUrl":null,"url":null,"abstract":"<p><p>Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively. The nitrite reduction process stimulated the fermentation of sludge to produce more organic matters, which served as electron donors for denitrification. With the nitrite concentrations increasing from 200 to 800 mg/L methane production decreased from 128.7 to 0 mg/L at the digestion time of 15 d. The toxicity of nitrite to methanogenic microorganisms and the nitrite reduction process competing with methanogens for carbon sources may lead to the inhibition of methane production by excessive nitrite. Moreover, the methane production reached 184.4 mL with 100 mg/L nitrite reduction, which was increased by 83.2 % compared with that without nitrite addition (101.1 mL). Nitrite reduction stimulated hydrolysis without negatively impacting acetogenesis, thereby providing more substrates for subsequent methanogenesis. Model-based analysis indicated that nitrite reduction enhanced the maximum methane yield and methane production rate, aligning with the aforementioned analysis. 16S rRNA analysis unraveled that the bacterial abundance associated with hydrolysis increased. This anaerobic digestion technique driven by nitrite reduction is both environmentally and economically attractive for increasing methane production.</p>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"27 ","pages":"100301"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wroa.2025.100301","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively. The nitrite reduction process stimulated the fermentation of sludge to produce more organic matters, which served as electron donors for denitrification. With the nitrite concentrations increasing from 200 to 800 mg/L methane production decreased from 128.7 to 0 mg/L at the digestion time of 15 d. The toxicity of nitrite to methanogenic microorganisms and the nitrite reduction process competing with methanogens for carbon sources may lead to the inhibition of methane production by excessive nitrite. Moreover, the methane production reached 184.4 mL with 100 mg/L nitrite reduction, which was increased by 83.2 % compared with that without nitrite addition (101.1 mL). Nitrite reduction stimulated hydrolysis without negatively impacting acetogenesis, thereby providing more substrates for subsequent methanogenesis. Model-based analysis indicated that nitrite reduction enhanced the maximum methane yield and methane production rate, aligning with the aforementioned analysis. 16S rRNA analysis unraveled that the bacterial abundance associated with hydrolysis increased. This anaerobic digestion technique driven by nitrite reduction is both environmentally and economically attractive for increasing methane production.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信