Portable six-channel laser speckle system for simultaneous measurement of cerebral blood flow and volume with potential applications in characterization of brain injury.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI:10.1117/1.NPh.12.1.015003
Simon Mahler, Yu Xi Huang, Max Ismagilov, David Álvarez-Chou, Aidin Abedi, J Michael Tyszka, Yu Tung Lo, Jonathan Russin, Richard L Pantera, Charles Liu, Changhuei Yang
{"title":"Portable six-channel laser speckle system for simultaneous measurement of cerebral blood flow and volume with potential applications in characterization of brain injury.","authors":"Simon Mahler, Yu Xi Huang, Max Ismagilov, David Álvarez-Chou, Aidin Abedi, J Michael Tyszka, Yu Tung Lo, Jonathan Russin, Richard L Pantera, Charles Liu, Changhuei Yang","doi":"10.1117/1.NPh.12.1.015003","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.</p><p><strong>Aim: </strong>We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.</p><p><strong>Approach: </strong>The system is based on speckle contrast optical spectroscopy and consists of laser diodes and board cameras, which have been both tested and investigated for safe use on the human head. Apart from the universal serial bus connection for the camera, the entire system, including its battery power source, is integrated into a wearable headband and is powered by 9-V batteries.</p><p><strong>Results: </strong>The temporal dynamics of both CBF and CBV in a cohort of five healthy subjects were synchronized and exhibited similar cardiac period waveforms across all six channels. The potential use of our six-channel system for detecting the physiological sequelae of brain injury was explored in two subjects, one with moderate and one with significant structural brain damage, where the six-point CBF and CBV measurements were referenced to structural magnetic resonance imaging (MRI) scans.</p><p><strong>Conclusions: </strong>We pave the way for a viable multi-point optical instrument for measuring CBF and CBV. Its cost-effectiveness allows for baseline metrics to be established prior to injury in populations at risk for brain injury.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"015003"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.015003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

Approach: The system is based on speckle contrast optical spectroscopy and consists of laser diodes and board cameras, which have been both tested and investigated for safe use on the human head. Apart from the universal serial bus connection for the camera, the entire system, including its battery power source, is integrated into a wearable headband and is powered by 9-V batteries.

Results: The temporal dynamics of both CBF and CBV in a cohort of five healthy subjects were synchronized and exhibited similar cardiac period waveforms across all six channels. The potential use of our six-channel system for detecting the physiological sequelae of brain injury was explored in two subjects, one with moderate and one with significant structural brain damage, where the six-point CBF and CBV measurements were referenced to structural magnetic resonance imaging (MRI) scans.

Conclusions: We pave the way for a viable multi-point optical instrument for measuring CBF and CBV. Its cost-effectiveness allows for baseline metrics to be established prior to injury in populations at risk for brain injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信