Qualitative and Quantitative Evaluation of the Image Quality of MDCT Multiphasic Liver Scans in HCC Patients.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL
International Journal of Biomedical Imaging Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI:10.1155/ijbi/4163865
Mohamed Zakaria El-Sayed, Mohammad Rawashdeh, Hend Galal Eldeen Mohamed Ali Hassan, Mohamed M El Safwany, Islam I E, Yasser I Khedr, Moustafa A Soula, Magdi A Ali
{"title":"Qualitative and Quantitative Evaluation of the Image Quality of MDCT Multiphasic Liver Scans in HCC Patients.","authors":"Mohamed Zakaria El-Sayed, Mohammad Rawashdeh, Hend Galal Eldeen Mohamed Ali Hassan, Mohamed M El Safwany, Islam I E, Yasser I Khedr, Moustafa A Soula, Magdi A Ali","doi":"10.1155/ijbi/4163865","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The quality of CT images obtained from hepatocellular carcinoma (HCC) patients is complex, affecting diagnostic accuracy, precision, and radiation dose assessment due to increased exposure risks. <b>Objectives:</b> The study evaluated image quality qualitatively and quantitatively by comparing quality levels with an effective radiation dose to ensure acceptable quality accuracy. <b>Materials and Methods:</b> This study retrospectively reviewed 100 known HCC patients (Li-RADS-5) who underwent multidetector computed tomography (MDCT) multiphasic scans for follow-up of their health condition between January and October 2023. The evaluation involved quantitative and qualitative analyses of parameters such as SD, SNR, and CNR, as well as a qualitative assessment by two radiology consultants. The outcomes were compared, and the effective dose was calculated and compared with both quantitative and qualitative assessments of image quality. <b>Results:</b> ROC curve analysis revealed significant differences in CT image quality, with high to moderate specificity and sensitivity across all the quantitative parameters. However, multivariate examination revealed decreasing importance levels, except for CNR (<i>B</i>, 0.203; <i>p</i> = 0.001) and SD BG (<i>B</i>, 0.330; <i>p</i> = 0.002), which increased in <i>B</i>. The CNR and SD BG remained independent variables for CT image quality prediction, but no statistically significant relationship was found between the effective dose and image quality, either quantitatively or qualitatively. <b>Conclusion:</b> This study underscores the vital role of both quantitative and qualitative assessments of CT images in evaluating their quality for patients with HCC and highlights the predictive importance of CNR, SNR, and SD. These findings emphasize the value of these devices in assessing and predicting outcomes to minimize the effective dose.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"4163865"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/4163865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The quality of CT images obtained from hepatocellular carcinoma (HCC) patients is complex, affecting diagnostic accuracy, precision, and radiation dose assessment due to increased exposure risks. Objectives: The study evaluated image quality qualitatively and quantitatively by comparing quality levels with an effective radiation dose to ensure acceptable quality accuracy. Materials and Methods: This study retrospectively reviewed 100 known HCC patients (Li-RADS-5) who underwent multidetector computed tomography (MDCT) multiphasic scans for follow-up of their health condition between January and October 2023. The evaluation involved quantitative and qualitative analyses of parameters such as SD, SNR, and CNR, as well as a qualitative assessment by two radiology consultants. The outcomes were compared, and the effective dose was calculated and compared with both quantitative and qualitative assessments of image quality. Results: ROC curve analysis revealed significant differences in CT image quality, with high to moderate specificity and sensitivity across all the quantitative parameters. However, multivariate examination revealed decreasing importance levels, except for CNR (B, 0.203; p = 0.001) and SD BG (B, 0.330; p = 0.002), which increased in B. The CNR and SD BG remained independent variables for CT image quality prediction, but no statistically significant relationship was found between the effective dose and image quality, either quantitatively or qualitatively. Conclusion: This study underscores the vital role of both quantitative and qualitative assessments of CT images in evaluating their quality for patients with HCC and highlights the predictive importance of CNR, SNR, and SD. These findings emphasize the value of these devices in assessing and predicting outcomes to minimize the effective dose.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信