Zhu Liu, Mah Roosh, Ming Lu, Aqsa Arshad, Wenqi Xian, Yuqiu Shen, Guocong Liu, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Khalid M Alotaibi
{"title":"Empowering wastewater treatment with step scheme heterojunction ternary nanocomposites for photocatalytic degradation of nitrophenol.","authors":"Zhu Liu, Mah Roosh, Ming Lu, Aqsa Arshad, Wenqi Xian, Yuqiu Shen, Guocong Liu, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Khalid M Alotaibi","doi":"10.1038/s41598-025-86975-z","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts Bi<sub>2</sub>O<sub>3</sub>/CdS and MoS<sub>2</sub>/Bi<sub>2</sub>O<sub>3</sub>/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS). Our results demonstrated that the Bi<sub>2</sub>O<sub>3</sub>/CdS heterojunction achieved an 86% degradation rate of 4-nitrophenol, while the MoS<sub>2</sub>/Bi<sub>2</sub>O<sub>3</sub>/CdS composite exhibited exceptional photocatalytic performance, achieving nearly complete degradation (99%) within 120 min under visible light irradiation. Most importantly the improved photocatalytic activity of MoS<sub>2</sub>/Bi<sub>2</sub>O<sub>3</sub>/CdS heterojunction originated from the release of internal electric field in S-scheme heterojunction. This enhanced activity is attributable to the synergistic effects of the heterojunctions that facilitate more effective charge separation and generation with more OP and RP confirmed the composite synthesis using S-scheme. The S-scheme is further confirmed by XPS, DRS, XPS-VB and photocurrent response. These findings highlight the promising application of these advanced photocatalysts in real-world wastewater treatment processes, offering a sustainable solution to combat water pollution.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3299"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86975-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts Bi2O3/CdS and MoS2/Bi2O3/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS). Our results demonstrated that the Bi2O3/CdS heterojunction achieved an 86% degradation rate of 4-nitrophenol, while the MoS2/Bi2O3/CdS composite exhibited exceptional photocatalytic performance, achieving nearly complete degradation (99%) within 120 min under visible light irradiation. Most importantly the improved photocatalytic activity of MoS2/Bi2O3/CdS heterojunction originated from the release of internal electric field in S-scheme heterojunction. This enhanced activity is attributable to the synergistic effects of the heterojunctions that facilitate more effective charge separation and generation with more OP and RP confirmed the composite synthesis using S-scheme. The S-scheme is further confirmed by XPS, DRS, XPS-VB and photocurrent response. These findings highlight the promising application of these advanced photocatalysts in real-world wastewater treatment processes, offering a sustainable solution to combat water pollution.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.