Physical forces supporting hyphal growth

IF 2.3 3区 生物学 Q3 GENETICS & HEREDITY
Nicholas P. Money
{"title":"Physical forces supporting hyphal growth","authors":"Nicholas P. Money","doi":"10.1016/j.fgb.2025.103961","DOIUrl":null,"url":null,"abstract":"<div><div>Hyphae are viscoelastic tubes whose internal pressure pushes the cell membrane against the inner surface of the cell wall. Catalytic yielding of the wall allows this turgor to force its polymers apart as new materials are added to the surface of the growing tip. Turgor drops slightly as the wall expands, creating a pressure gradient that causes the cytoplasm to flow toward the tip. These physiological processes affect the rate of extension of the hypha and determine the magnitude of the force that it uses for invasive growth. This paper provides an overview of the experimental basis for this description of hyphal mechanics and explains the wider significance of biophysical studies on fungi and water molds.</div></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"177 ","pages":"Article 103961"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184525000027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyphae are viscoelastic tubes whose internal pressure pushes the cell membrane against the inner surface of the cell wall. Catalytic yielding of the wall allows this turgor to force its polymers apart as new materials are added to the surface of the growing tip. Turgor drops slightly as the wall expands, creating a pressure gradient that causes the cytoplasm to flow toward the tip. These physiological processes affect the rate of extension of the hypha and determine the magnitude of the force that it uses for invasive growth. This paper provides an overview of the experimental basis for this description of hyphal mechanics and explains the wider significance of biophysical studies on fungi and water molds.
支持菌丝生长的物理力量。
菌丝是粘弹性管,其内部压力将细胞膜推向细胞壁的内表面。当新材料被添加到生长尖端的表面时,壁的催化生成允许这种膨胀迫使其聚合物分离。当细胞壁膨胀时,膨压会轻微下降,产生压力梯度,导致细胞质向尖端流动。这些生理过程影响菌丝的延伸速度,并决定其用于侵入性生长的力的大小。本文概述了菌丝力学描述的实验基础,并解释了真菌和水霉菌生物物理研究的更广泛意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信