Integrated analysis of marked and count data to characterize fine-scale stream fish movement.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Yoichiro Kanno, Noël M Clark, Kasey C Pregler, Seoghyun Kim
{"title":"Integrated analysis of marked and count data to characterize fine-scale stream fish movement.","authors":"Yoichiro Kanno, Noël M Clark, Kasey C Pregler, Seoghyun Kim","doi":"10.1007/s00442-024-05639-3","DOIUrl":null,"url":null,"abstract":"<p><p>Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months. Our study targeted small-bodied fish, for which imperfect capture was accounted for (bluehead chub Nocomis leptocephalus, creek chub Semotilus atromaculatus and mottled sculpin Cottus bairdii). Based on data from 2021 individuals across all species, we found that proportions of immigrants in 20-m sections averaged 30-42% among the study species, but they varied over space and time. Creek chub immigrants increased during warmer intervals when individuals grew more and transitioned between body size classes, suggesting that immigration was due to ontogenetic habitat shifts. There was a weak pattern across the species that individuals were more likely to leave 20-m sections when flow was higher. Water-column species (bluehead chub and creek chub) were more likely to immigrate into and stay in deeper sections with more pool area. Across all species and occasions, number of immigrants to stream sections did not decrease with number of individuals that survived and stayed in the same sections. Thus, the habitat did not appear saturated, and our data provided no evidence that intra-specific interactions affected fine-scale movement at our fish densities. In conclusion, high turnover rates characterized fish movement among stream sections and their variation was associated with temporal and spatial shifts in abiotic conditions.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"25"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05639-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months. Our study targeted small-bodied fish, for which imperfect capture was accounted for (bluehead chub Nocomis leptocephalus, creek chub Semotilus atromaculatus and mottled sculpin Cottus bairdii). Based on data from 2021 individuals across all species, we found that proportions of immigrants in 20-m sections averaged 30-42% among the study species, but they varied over space and time. Creek chub immigrants increased during warmer intervals when individuals grew more and transitioned between body size classes, suggesting that immigration was due to ontogenetic habitat shifts. There was a weak pattern across the species that individuals were more likely to leave 20-m sections when flow was higher. Water-column species (bluehead chub and creek chub) were more likely to immigrate into and stay in deeper sections with more pool area. Across all species and occasions, number of immigrants to stream sections did not decrease with number of individuals that survived and stayed in the same sections. Thus, the habitat did not appear saturated, and our data provided no evidence that intra-specific interactions affected fine-scale movement at our fish densities. In conclusion, high turnover rates characterized fish movement among stream sections and their variation was associated with temporal and spatial shifts in abiotic conditions.

对标记数据和计数数据进行综合分析,以确定细尺度溪流鱼类活动的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信