Jingjing Wang, Jingjing Li, Gang Su, Youbin Zhang, Zhu Wang, Yujuan Jia, Qian Yu, Zhenya Shen, Yanxia Zhang, Yunsheng Yu
{"title":"Neutrophil-derived apoptotic body membranes-fused exosomes targeting treatment for myocardial infarction.","authors":"Jingjing Wang, Jingjing Li, Gang Su, Youbin Zhang, Zhu Wang, Yujuan Jia, Qian Yu, Zhenya Shen, Yanxia Zhang, Yunsheng Yu","doi":"10.1093/rb/rbae145","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation. To address this, it is proposed to enhance their targeting specificity and retention in infarcted myocardium by fusing exosomes with neutrophil-derived apoptotic body membranes (NAM). These NAM inherit the surface signals from neutrophils, which allow them to home in on the damaged tissues and participate in regulating inflammatory responses. In this current work, we utilized a membrane fusion technique to create NAM-fused exosomes (NAM-Exo) for MI treatment. Compared to their native counterparts, NAM-Exo demonstrated enhanced adhesion to inflammatory endothelial cells, replicating the neutrophil recruitment mechanism at sites of myocardial injury in MI. Furthermore, our findings revealed that NAM-Exo not only significantly modulated inflammation responses but also promoted angiogenesis in a mouse model of MI, ultimately leading to improved cardiac function and ventricular remodeling post-treatment. These results underscore the potential of membrane fusion as an effective strategy to enhance the therapeutic efficacy of exosome-based cardiac repair and regeneration therapies, thereby paving the way for their translation into clinical practice.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbae145"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae145","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation. To address this, it is proposed to enhance their targeting specificity and retention in infarcted myocardium by fusing exosomes with neutrophil-derived apoptotic body membranes (NAM). These NAM inherit the surface signals from neutrophils, which allow them to home in on the damaged tissues and participate in regulating inflammatory responses. In this current work, we utilized a membrane fusion technique to create NAM-fused exosomes (NAM-Exo) for MI treatment. Compared to their native counterparts, NAM-Exo demonstrated enhanced adhesion to inflammatory endothelial cells, replicating the neutrophil recruitment mechanism at sites of myocardial injury in MI. Furthermore, our findings revealed that NAM-Exo not only significantly modulated inflammation responses but also promoted angiogenesis in a mouse model of MI, ultimately leading to improved cardiac function and ventricular remodeling post-treatment. These results underscore the potential of membrane fusion as an effective strategy to enhance the therapeutic efficacy of exosome-based cardiac repair and regeneration therapies, thereby paving the way for their translation into clinical practice.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.