A molecular module improves rice grain quality and yield at high temperatures.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-11-26 eCollection Date: 2025-02-01 DOI:10.1093/nsr/nwae416
Feifei Lu, Guiai Jiao, Jiehua Qiu, Shaolu Zhao, Fengli Zhao, Ping Wang, Luna Chen, Pengfei Chen, Xinwei Li, Nannan Dong, Ruijie Cao, Xiaoxue Li, Zheyan Ruan, Gaoneng Shao, Shikai Hu, Zhonghua Sheng, Lihong Xie, Shaoqing Tang, Peisong Hu, Xiangjin Wei
{"title":"A molecular module improves rice grain quality and yield at high temperatures.","authors":"Feifei Lu, Guiai Jiao, Jiehua Qiu, Shaolu Zhao, Fengli Zhao, Ping Wang, Luna Chen, Pengfei Chen, Xinwei Li, Nannan Dong, Ruijie Cao, Xiaoxue Li, Zheyan Ruan, Gaoneng Shao, Shikai Hu, Zhonghua Sheng, Lihong Xie, Shaoqing Tang, Peisong Hu, Xiangjin Wei","doi":"10.1093/nsr/nwae416","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice. OsHsp40-1 also interacts with the key starch biosynthetic enzymes OsGBSSI and OsPPDKB and thereby enhances their stability and activity, which is essential for maintaining rice quality and grain yield under moderate high-temperature (HT) conditions. Overexpression of <i>OsHsp70-2</i> and <i>OsHsp40-1</i> in rice significantly improved grain quality and yield at HT. Furthermore, a haplotype analysis identified favorable alleles of <i>OsHsp70-2</i> and <i>OsHsp40-1</i>, which could be used for improving thermotolerance in rice. Collectively, our findings reveal a novel mechanism by which the OsHsp70-2-OsHsp40-1 module ameliorates the effects of HT on starch biosynthesis, providing a new strategy for genetic improvement of rice quality and yield under HT conditions.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwae416"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae416","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice. OsHsp40-1 also interacts with the key starch biosynthetic enzymes OsGBSSI and OsPPDKB and thereby enhances their stability and activity, which is essential for maintaining rice quality and grain yield under moderate high-temperature (HT) conditions. Overexpression of OsHsp70-2 and OsHsp40-1 in rice significantly improved grain quality and yield at HT. Furthermore, a haplotype analysis identified favorable alleles of OsHsp70-2 and OsHsp40-1, which could be used for improving thermotolerance in rice. Collectively, our findings reveal a novel mechanism by which the OsHsp70-2-OsHsp40-1 module ameliorates the effects of HT on starch biosynthesis, providing a new strategy for genetic improvement of rice quality and yield under HT conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信