{"title":"A molecular module improves rice grain quality and yield at high temperatures.","authors":"Feifei Lu, Guiai Jiao, Jiehua Qiu, Shaolu Zhao, Fengli Zhao, Ping Wang, Luna Chen, Pengfei Chen, Xinwei Li, Nannan Dong, Ruijie Cao, Xiaoxue Li, Zheyan Ruan, Gaoneng Shao, Shikai Hu, Zhonghua Sheng, Lihong Xie, Shaoqing Tang, Peisong Hu, Xiangjin Wei","doi":"10.1093/nsr/nwae416","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice. OsHsp40-1 also interacts with the key starch biosynthetic enzymes OsGBSSI and OsPPDKB and thereby enhances their stability and activity, which is essential for maintaining rice quality and grain yield under moderate high-temperature (HT) conditions. Overexpression of <i>OsHsp70-2</i> and <i>OsHsp40-1</i> in rice significantly improved grain quality and yield at HT. Furthermore, a haplotype analysis identified favorable alleles of <i>OsHsp70-2</i> and <i>OsHsp40-1</i>, which could be used for improving thermotolerance in rice. Collectively, our findings reveal a novel mechanism by which the OsHsp70-2-OsHsp40-1 module ameliorates the effects of HT on starch biosynthesis, providing a new strategy for genetic improvement of rice quality and yield under HT conditions.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwae416"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae416","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice. OsHsp40-1 also interacts with the key starch biosynthetic enzymes OsGBSSI and OsPPDKB and thereby enhances their stability and activity, which is essential for maintaining rice quality and grain yield under moderate high-temperature (HT) conditions. Overexpression of OsHsp70-2 and OsHsp40-1 in rice significantly improved grain quality and yield at HT. Furthermore, a haplotype analysis identified favorable alleles of OsHsp70-2 and OsHsp40-1, which could be used for improving thermotolerance in rice. Collectively, our findings reveal a novel mechanism by which the OsHsp70-2-OsHsp40-1 module ameliorates the effects of HT on starch biosynthesis, providing a new strategy for genetic improvement of rice quality and yield under HT conditions.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.