Ly Tan Nhiem, Jianbin Mao, Qui Thanh Hoai Ta, Soonmin Seo
{"title":"Highly selective ethanol gas sensor based on CdS/Ti<sub>3</sub>C<sub>2</sub>T <sub><i>x</i></sub> MXene composites.","authors":"Ly Tan Nhiem, Jianbin Mao, Qui Thanh Hoai Ta, Soonmin Seo","doi":"10.1039/d4na00927d","DOIUrl":null,"url":null,"abstract":"<p><p>Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors. Here, a superior ethanol sensor with a high response and fast recovery was synthesized by \"wrapping\" CdS nanoparticles on metallic Ti<sub>3</sub>C<sub>2</sub>T <sub><i>x</i></sub> MXene using a simple method. CdS nanoparticles were uniformly covered on the Ti<sub>3</sub>C<sub>2</sub>T <sub><i>x</i></sub> MXene surface, forming a \"rice crust\"-like heterostructure. The sensor displayed good detection of ethanol gas at room temperature. Response signals up to 31% were obtained for ethanol molecules (20 ppm) with quick recovery (41 s). The performance of the ethanol sensor was evaluated across a range of concentrations (5-100 ppm) and relative humidity (60% and 90% RH) at room temperature. Our method could open up a new strategy for the development of ethanol sensors.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00927d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors. Here, a superior ethanol sensor with a high response and fast recovery was synthesized by "wrapping" CdS nanoparticles on metallic Ti3C2T x MXene using a simple method. CdS nanoparticles were uniformly covered on the Ti3C2T x MXene surface, forming a "rice crust"-like heterostructure. The sensor displayed good detection of ethanol gas at room temperature. Response signals up to 31% were obtained for ethanol molecules (20 ppm) with quick recovery (41 s). The performance of the ethanol sensor was evaluated across a range of concentrations (5-100 ppm) and relative humidity (60% and 90% RH) at room temperature. Our method could open up a new strategy for the development of ethanol sensors.