The role of energy deposition on the luminescence sensitization in porphyrin-functionalized SiO2/ZnO nanoparticles under X-ray excitation.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Irene Villa, Roberta Crapanzano, Silvia Mostoni, Anne-Laure Bulin, Massimiliano D'Arienzo, Barbara Di Credico, Anna Vedda, Roberto Scotti, Mauro Fasoli
{"title":"The role of energy deposition on the luminescence sensitization in porphyrin-functionalized SiO<sub>2</sub>/ZnO nanoparticles under X-ray excitation.","authors":"Irene Villa, Roberta Crapanzano, Silvia Mostoni, Anne-Laure Bulin, Massimiliano D'Arienzo, Barbara Di Credico, Anna Vedda, Roberto Scotti, Mauro Fasoli","doi":"10.1039/d4na00640b","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO<sub>2</sub>/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics. Radioluminescence measurements under increasing energy of the ionizing radiation beam up to 10 keV show sensitization of porphyrin moieties on SiO<sub>2</sub>/ZnO. This can be attributed to an increase in energy deposition promoted by the ZnO nanoparticles, which have a higher density and atomic number. This assumption was confirmed by computational simulations of energy deposition after the first interaction of ionizing radiation with SiO<sub>2</sub>, ZnO, and air. Indeed, Monte Carlo simulations evidence that, despite a decrease in the absolute number of X-rays interacting within the system while increasing the energy of the beam, at 10 keV, the presence of ZnO is dominant to enhance energy deposition. Hence, these experimental and computational studies evidence the importance of each hybrid nanosystem component in the scintillation process. This work shows how an appropriate choice of constituents, in terms of physicochemical properties and architecture, can favour energy deposition mechanisms under X-ray irradiation and thus can boost the hybrid nanosystems' performance for diverse biomedical scintillation-based applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00640b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO2/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics. Radioluminescence measurements under increasing energy of the ionizing radiation beam up to 10 keV show sensitization of porphyrin moieties on SiO2/ZnO. This can be attributed to an increase in energy deposition promoted by the ZnO nanoparticles, which have a higher density and atomic number. This assumption was confirmed by computational simulations of energy deposition after the first interaction of ionizing radiation with SiO2, ZnO, and air. Indeed, Monte Carlo simulations evidence that, despite a decrease in the absolute number of X-rays interacting within the system while increasing the energy of the beam, at 10 keV, the presence of ZnO is dominant to enhance energy deposition. Hence, these experimental and computational studies evidence the importance of each hybrid nanosystem component in the scintillation process. This work shows how an appropriate choice of constituents, in terms of physicochemical properties and architecture, can favour energy deposition mechanisms under X-ray irradiation and thus can boost the hybrid nanosystems' performance for diverse biomedical scintillation-based applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信