Treatment with a superoxide dismutase mimetic for joint preservation during 35 and 75 days in orbit aboard the international space station, and after 120 days recovery on Earth

IF 2.9 3区 生物学 Q2 ASTRONOMY & ASTROPHYSICS
Chirayu M. Patel , Sabrina Vander Wiele , Leslie Kim , Ethan Payne , Michelle Bruno-Garcia , Anne Devorak , Daniel E. Kaganov , Anthony Lau , Martin Guthold , Michael D. Delp , James Crapo , Xiao W. Mao , Jeffrey S. Willey
{"title":"Treatment with a superoxide dismutase mimetic for joint preservation during 35 and 75 days in orbit aboard the international space station, and after 120 days recovery on Earth","authors":"Chirayu M. Patel ,&nbsp;Sabrina Vander Wiele ,&nbsp;Leslie Kim ,&nbsp;Ethan Payne ,&nbsp;Michelle Bruno-Garcia ,&nbsp;Anne Devorak ,&nbsp;Daniel E. Kaganov ,&nbsp;Anthony Lau ,&nbsp;Martin Guthold ,&nbsp;Michael D. Delp ,&nbsp;James Crapo ,&nbsp;Xiao W. Mao ,&nbsp;Jeffrey S. Willey","doi":"10.1016/j.lssr.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents. Cartilage and meniscal degradation in mice were measured via microCT, histology, and transcriptomics after: (1) ∼ 35 days on the ISS, (2) ∼ 35 days on the ISS followed by 120 days weight-bearing readaptation on Earth or (3) ∼ 75 days on the ISS. The study had a limited sample size, so both significant effects and generalized patterns are reported. After 35 days aboard the ISS, cartilage volume at the tibial-femoral cartilage-cartilage contact point decreased, meniscal volume decreased concurrent with an increase in pro-osteoarthritic signaling in the joint soft tissue. Similarly, a decrease in cortical and trabecular bone volume of the tibia was observed. Treatment with the SOD mimetic preserved the trabecular bone, articular cartilage and the menisci after 35 days aboard the ISS, but had limited efficacy retaining that recovery after 120 days of weight bearing, and after 75 days on orbit. Antioxidants including BuOE may serve as a potential countermeasure option to protect musculoskeletal health during spaceflight missions, and continued use may be necessary upon reaching a destination.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 67-78"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424000981","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents. Cartilage and meniscal degradation in mice were measured via microCT, histology, and transcriptomics after: (1) ∼ 35 days on the ISS, (2) ∼ 35 days on the ISS followed by 120 days weight-bearing readaptation on Earth or (3) ∼ 75 days on the ISS. The study had a limited sample size, so both significant effects and generalized patterns are reported. After 35 days aboard the ISS, cartilage volume at the tibial-femoral cartilage-cartilage contact point decreased, meniscal volume decreased concurrent with an increase in pro-osteoarthritic signaling in the joint soft tissue. Similarly, a decrease in cortical and trabecular bone volume of the tibia was observed. Treatment with the SOD mimetic preserved the trabecular bone, articular cartilage and the menisci after 35 days aboard the ISS, but had limited efficacy retaining that recovery after 120 days of weight bearing, and after 75 days on orbit. Antioxidants including BuOE may serve as a potential countermeasure option to protect musculoskeletal health during spaceflight missions, and continued use may be necessary upon reaching a destination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Life Sciences in Space Research
Life Sciences in Space Research Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
5.30
自引率
8.00%
发文量
69
期刊介绍: Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research. Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信