The Effects of Cosmic Radiation Exposure on Pregnancy During a Probable Manned Mission to Mars

IF 2.9 3区 生物学 Q2 ASTRONOMY & ASTROPHYSICS
Abdurrahman Engin Demir , Elif Nur Sevinc , Mustafa Ulubay
{"title":"The Effects of Cosmic Radiation Exposure on Pregnancy During a Probable Manned Mission to Mars","authors":"Abdurrahman Engin Demir ,&nbsp;Elif Nur Sevinc ,&nbsp;Mustafa Ulubay","doi":"10.1016/j.lssr.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration – and possibly the occurrence – of deep-space missions. High doses of cosmic radiation exposure during spaceflight, particularly during exploration class missions, may have teratogenic effects on a developing fetus, if an unintended pregnancy occurs shortly before or during the flight. This study aimed to discuss whether the cumulative dosage for a pregnant woman during a probable manned mission to Mars may exceed the terrestrial teratogenic radiation limit. A variety of studies, technical documents, and publications that provided flight duration data and the absorbed cosmic radiation dosage equivalents between Earth and Mars were analyzed. A literature-based hypothetical model of a pregnancy simulation over a 6-month spaceflight was also designed to estimate the cumulative absorbed GCR dose. The estimated dose rates ranged from 90 to 324 mSv. Assuming that a pregnant crew member is exposed to this dosage range, the total teratogenic dose equivalent to the embryo/fetus appear to be significantly higher than that of the National Council on Radiation Protection (NCRP)’s and United States Nuclear Regulatory Commission (USNRC)’s recommendations, which state a maximum radiation dose of 5 mSv for the duration of the pregnancy, and thus such an exceeded dose may likely result in teratogenesis. Current protective strategies may not be sufficient to protect the human genome from the detrimental effects of cosmic radiation, and they need be improved for long-term interplanetary travels during human colonization of Mars.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"44 ","pages":"Pages 154-162"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221455242400097X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration – and possibly the occurrence – of deep-space missions. High doses of cosmic radiation exposure during spaceflight, particularly during exploration class missions, may have teratogenic effects on a developing fetus, if an unintended pregnancy occurs shortly before or during the flight. This study aimed to discuss whether the cumulative dosage for a pregnant woman during a probable manned mission to Mars may exceed the terrestrial teratogenic radiation limit. A variety of studies, technical documents, and publications that provided flight duration data and the absorbed cosmic radiation dosage equivalents between Earth and Mars were analyzed. A literature-based hypothetical model of a pregnancy simulation over a 6-month spaceflight was also designed to estimate the cumulative absorbed GCR dose. The estimated dose rates ranged from 90 to 324 mSv. Assuming that a pregnant crew member is exposed to this dosage range, the total teratogenic dose equivalent to the embryo/fetus appear to be significantly higher than that of the National Council on Radiation Protection (NCRP)’s and United States Nuclear Regulatory Commission (USNRC)’s recommendations, which state a maximum radiation dose of 5 mSv for the duration of the pregnancy, and thus such an exceeded dose may likely result in teratogenesis. Current protective strategies may not be sufficient to protect the human genome from the detrimental effects of cosmic radiation, and they need be improved for long-term interplanetary travels during human colonization of Mars.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Life Sciences in Space Research
Life Sciences in Space Research Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
5.30
自引率
8.00%
发文量
69
期刊介绍: Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research. Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信