Congcong Li, Tongyang Xu, Guopeng Hou, Yin Wang, Qinrui Fu
{"title":"DNA nanotechnology-based strategies for gastric cancer diagnosis and therapy","authors":"Congcong Li, Tongyang Xu, Guopeng Hou, Yin Wang, Qinrui Fu","doi":"10.1016/j.mtbio.2025.101459","DOIUrl":null,"url":null,"abstract":"<div><div>Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC. With the advent of nanotechnology, researchers continue to explore new possibilities for accurate diagnosis and effective treatment. One such breakthrough is the application of DNA nanotechnology. In this paper, the application of exciting DNA nanomaterials in the diagnosis and treatment of GC is discussed in depth. Firstly, the biomarkers related to GC and the diagnostic strategies related to DNA nanotechnology are summarized. Second, the latest research progress of DNA nanomaterials in the GC targeted therapy are summarized. Finally, the challenges and opportunities of DNA nanomaterials in the research and clinical application of GC are prospected.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"30 ","pages":"Article 101459"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425000171","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC. With the advent of nanotechnology, researchers continue to explore new possibilities for accurate diagnosis and effective treatment. One such breakthrough is the application of DNA nanotechnology. In this paper, the application of exciting DNA nanomaterials in the diagnosis and treatment of GC is discussed in depth. Firstly, the biomarkers related to GC and the diagnostic strategies related to DNA nanotechnology are summarized. Second, the latest research progress of DNA nanomaterials in the GC targeted therapy are summarized. Finally, the challenges and opportunities of DNA nanomaterials in the research and clinical application of GC are prospected.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).