{"title":"THG-1/TSC22D4 promotes interleukin-1 signaling through stabilization of TRAF6 in squamous cell carcinoma.","authors":"Yasuhito Okano, Hiroyuki Suzuki, Yukihide Watanabe, Mohammed Abdelaziz, Lev Manevich, Kunio Kawanishi, Haruka Ozaki, Ryota Ishii, Shin Matsumoto, Nohara Goto, Ling Zheng, Yukari Okita, Jongchan Hwang, Masahiro Nakayama, Yoshihide Shima, Noriaki Sakamoto, Masayuki Noguchi, Keiji Tabuchi, Mitsuyasu Kato","doi":"10.1158/1541-7786.MCR-24-0120","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression. However, the mechanism of continuous activation of IL-1-mediated inflammatory pathway in tumor has not been fully elucidated. This study provides a novel mechanism of the autocrine activation of IL-1 signaling in squamous cell carcinoma (SCC) through a novel oncoprotein, TSC-22 homologous gene-1 (THG-1, also known as TSD22D4). The RNA sequencing analysis revealed that THG-1 overexpression enhances the transcription of NF-κB targets including IL1A, IL1B, TNFA, and IL8. Furthermore, THG-1 knockdown reduced the responsiveness to IL-1 through suppression of NF-κB nuclear translocation. To elucidate the mechanism, we focused on a THG-1 interacting protein, NRBP1. We found that NRBP1 facilitates the degradation of TRAF6 through its E3 ubiquitin ligase activity. THG-1 bound to NRBP1 and suppressed the degradation of TRAF6. Furthermore, THG-1 knockdown reduced TRAF6 abundance and NF-κB activity in SCC cells. Public database analyses of head and neck SCC revealed that high expression of THG-1 is associated with activation of the IL-1 and TNF pathways, which share TRAF6 in the signal transductions. Finally, THG-1 abundance in laryngeal SCC specimens is elevated in patients with recurrence. These results indicated that THG-1 drives the self-sufficiency of IL-1-mediated inflammatory pathway, which could contribute to the future diagnosis and immune therapy of SCCs. Implications: An oncoprotein THG-1/TSD22D4 activates the IL-1-mediated inflammatory pathway through suppression of TRAF6 degradation, which mediates the continuous inflammation in tumors.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression. However, the mechanism of continuous activation of IL-1-mediated inflammatory pathway in tumor has not been fully elucidated. This study provides a novel mechanism of the autocrine activation of IL-1 signaling in squamous cell carcinoma (SCC) through a novel oncoprotein, TSC-22 homologous gene-1 (THG-1, also known as TSD22D4). The RNA sequencing analysis revealed that THG-1 overexpression enhances the transcription of NF-κB targets including IL1A, IL1B, TNFA, and IL8. Furthermore, THG-1 knockdown reduced the responsiveness to IL-1 through suppression of NF-κB nuclear translocation. To elucidate the mechanism, we focused on a THG-1 interacting protein, NRBP1. We found that NRBP1 facilitates the degradation of TRAF6 through its E3 ubiquitin ligase activity. THG-1 bound to NRBP1 and suppressed the degradation of TRAF6. Furthermore, THG-1 knockdown reduced TRAF6 abundance and NF-κB activity in SCC cells. Public database analyses of head and neck SCC revealed that high expression of THG-1 is associated with activation of the IL-1 and TNF pathways, which share TRAF6 in the signal transductions. Finally, THG-1 abundance in laryngeal SCC specimens is elevated in patients with recurrence. These results indicated that THG-1 drives the self-sufficiency of IL-1-mediated inflammatory pathway, which could contribute to the future diagnosis and immune therapy of SCCs. Implications: An oncoprotein THG-1/TSD22D4 activates the IL-1-mediated inflammatory pathway through suppression of TRAF6 degradation, which mediates the continuous inflammation in tumors.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.