A novel nanocarrier based on natural polyphenols enhancing gemcitabine sensitization ability for improved pancreatic cancer therapy efficiency.

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Materials Today Bio Pub Date : 2025-01-06 eCollection Date: 2025-02-01 DOI:10.1016/j.mtbio.2025.101463
Yuman Dong, Jieru Li, Yiwei Dai, Xinyu Zhang, Xiangyan Jiang, Tao Wang, Bin Zhao, Wenbo Liu, Haonan Sun, Pengcheng Du, Long Qin, Zuoyi Jiao
{"title":"A novel nanocarrier based on natural polyphenols enhancing gemcitabine sensitization ability for improved pancreatic cancer therapy efficiency.","authors":"Yuman Dong, Jieru Li, Yiwei Dai, Xinyu Zhang, Xiangyan Jiang, Tao Wang, Bin Zhao, Wenbo Liu, Haonan Sun, Pengcheng Du, Long Qin, Zuoyi Jiao","doi":"10.1016/j.mtbio.2025.101463","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer (PC) is a highly lethal malignancy with rapid progression and poor prognosis. Despite the widespread use of gemcitabine (Gem)-based chemotherapy as the first-line treatment for PC, its efficacy is often compromised by significant drug resistance. 1,2,3,4,6-Pentagaloyl glucose (PGG), a natural polyphenol, has demonstrated potential in sensitizing PC cells to Gem. However, its clinical application is limited by poor water solubility and bioavailability. In this study, we developed a novel PGG-based nanocarrier (FP) using a straightforward, one-step self-assembly method with Pluronic F127 and PGG. Our results showed that FP induced DNA damage and immunogenic cell death (ICD) in both <i>in vitro</i> cell experiments and patient-derived organoid models, exhibiting potent anti-tumor effects. Furthermore, in mouse KPC and PDX models, FP, when combined with Gem, showed enhanced Gem sensitization compared to pure PGG, largely due to increased DNA damage and ICD induction. These findings demonstrate the potential of FP to improve the stability and utilization of PGG as effective Gem sensitizers in the treatment of pancreatic cancer, providing a promising pathway for clinical application and translational research.</p>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"30 ","pages":"101463"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.mtbio.2025.101463","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer (PC) is a highly lethal malignancy with rapid progression and poor prognosis. Despite the widespread use of gemcitabine (Gem)-based chemotherapy as the first-line treatment for PC, its efficacy is often compromised by significant drug resistance. 1,2,3,4,6-Pentagaloyl glucose (PGG), a natural polyphenol, has demonstrated potential in sensitizing PC cells to Gem. However, its clinical application is limited by poor water solubility and bioavailability. In this study, we developed a novel PGG-based nanocarrier (FP) using a straightforward, one-step self-assembly method with Pluronic F127 and PGG. Our results showed that FP induced DNA damage and immunogenic cell death (ICD) in both in vitro cell experiments and patient-derived organoid models, exhibiting potent anti-tumor effects. Furthermore, in mouse KPC and PDX models, FP, when combined with Gem, showed enhanced Gem sensitization compared to pure PGG, largely due to increased DNA damage and ICD induction. These findings demonstrate the potential of FP to improve the stability and utilization of PGG as effective Gem sensitizers in the treatment of pancreatic cancer, providing a promising pathway for clinical application and translational research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信