A Novel HTNV Budding Inhibitor Interferes the Interaction Between Viral Glycoprotein and Host ESCRT Accessory Protein ALIX.

IF 6.8 3区 医学 Q1 VIROLOGY
Qikang Ying, Xiaoxiao Zhang, Shengzheng Wang, Tianle Gu, Junmei Zhang, Wenjie Feng, Dongjing Li, Yuhang Dong, Xingan Wu, Fang Wang
{"title":"A Novel HTNV Budding Inhibitor Interferes the Interaction Between Viral Glycoprotein and Host ESCRT Accessory Protein ALIX.","authors":"Qikang Ying, Xiaoxiao Zhang, Shengzheng Wang, Tianle Gu, Junmei Zhang, Wenjie Feng, Dongjing Li, Yuhang Dong, Xingan Wu, Fang Wang","doi":"10.1002/jmv.70182","DOIUrl":null,"url":null,"abstract":"<p><p>Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics. In this study, we elucidated the functional role of the conserved YRTL motif within the glycoprotein Gn cytoplasmic tail of Orthohantavirus hantanense (Hantaan virus, HTNV), demonstrating that HTNV production is regulated by the interaction between YRTL and the ESCRT accessory protein ALIX (ALG-2 interacting protein X). Through virtual molecule docking screening, followed by in vitro and in vivo assays, we discovered a novel compound, AN-329, which disrupts the YRTL-ALIX interaction and effectively inhibits infectious HTNV production, as well as Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) VLP release. This makes AN-329 a promising therapeutic candidate for reducing viral dissemination. Given that YRTL is conserved across many hantaviruses, our findings may serve as a prototype for the development of broad-spectrum antiviral drugs.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 2","pages":"e70182"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmv.70182","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics. In this study, we elucidated the functional role of the conserved YRTL motif within the glycoprotein Gn cytoplasmic tail of Orthohantavirus hantanense (Hantaan virus, HTNV), demonstrating that HTNV production is regulated by the interaction between YRTL and the ESCRT accessory protein ALIX (ALG-2 interacting protein X). Through virtual molecule docking screening, followed by in vitro and in vivo assays, we discovered a novel compound, AN-329, which disrupts the YRTL-ALIX interaction and effectively inhibits infectious HTNV production, as well as Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) VLP release. This makes AN-329 a promising therapeutic candidate for reducing viral dissemination. Given that YRTL is conserved across many hantaviruses, our findings may serve as a prototype for the development of broad-spectrum antiviral drugs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Virology
Journal of Medical Virology 医学-病毒学
CiteScore
23.20
自引率
2.40%
发文量
777
审稿时长
1 months
期刊介绍: The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells. The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists. The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信