{"title":"Towards a standard application of the Reynolds number in studies of aquatic animal locomotion.","authors":"D Weihs, A Farsani, R Gurka","doi":"10.1242/jeb.249896","DOIUrl":null,"url":null,"abstract":"<p><p>Nondimensional groups of measured quantities enable comparison between measurements of animals under different conditions and comparison between species. One of the most used such group is the Reynolds number, which compares inertial and viscous contributions to forces on swimming animals. This group includes two quantities that are chosen by the researcher: a typical length and speed. Choosing these parameters will affect the numerical value of the Reynolds number, defining the state of the fluid flow. For example: by choosing fish body length as opposed to propulsive fin chord, results may vary by an order of magnitude with consequences for analysis and hydrodynamic regimes. Here we suggest a standardized sets of lengths and speeds to be used for aquatic animal locomotion to enable confident utilization of data from different sources. This framework aims to improve comparative studies within the field.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249896","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nondimensional groups of measured quantities enable comparison between measurements of animals under different conditions and comparison between species. One of the most used such group is the Reynolds number, which compares inertial and viscous contributions to forces on swimming animals. This group includes two quantities that are chosen by the researcher: a typical length and speed. Choosing these parameters will affect the numerical value of the Reynolds number, defining the state of the fluid flow. For example: by choosing fish body length as opposed to propulsive fin chord, results may vary by an order of magnitude with consequences for analysis and hydrodynamic regimes. Here we suggest a standardized sets of lengths and speeds to be used for aquatic animal locomotion to enable confident utilization of data from different sources. This framework aims to improve comparative studies within the field.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.