The NmpRSTU multi-component signaling system of Myxococcus xanthus regulates expression of an oxygen utilization regulon.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Colin T McAllister, Allison M Ronk, Mason J Stenzel, John R Kirby, Daniel J Bretl
{"title":"The NmpRSTU multi-component signaling system of <i>Myxococcus xanthus</i> regulates expression of an oxygen utilization regulon.","authors":"Colin T McAllister, Allison M Ronk, Mason J Stenzel, John R Kirby, Daniel J Bretl","doi":"10.1128/jb.00280-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Myxococcus xanthus</i> has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in <i>M. xanthus</i> social motility. NmpRSTU was discovered through a screen that identified mutations in <i>nmp</i> genes that restored Type-IV pili-dependent motility to a nonmotile strain. The Nmp pathway begins with the SK NmpU, which is predicted to be active in the presence of oxygen. NmpU phosphorylates another SK, NmpS, a hybrid kinase containing an RR domain and a HisKA-CA domain. These two kinases work in a reciprocal fashion: when NmpU is active, NmpS is inactive, and vice versa. Finally, the phosphorelay culminates in NmpS phosphorylating the NtrC-like RR NmpR. To better understand the role of NmpRSTU in <i>M. xanthus</i> physiology, we determined the NmpR regulon by combining <i>in silico</i> predictions of the NmpR consensus binding sequence with <i>in vitro</i> electromobility shift assays (EMSAs) and <i>in vivo</i> transcriptional reporters. We identified several NmpR-dependent, upregulated genes likely to be important in oxygen utilization. Additionally, we demonstrate NmpRSTU plays a role in fruiting body development, suggesting a role for oxygen sensing in this behavior. We propose that NmpRSTU senses oxygen-limiting conditions, and NmpR upregulates genes associated with optimal utilization of that oxygen. This may be necessary for <i>M. xanthus</i> physiology and behaviors in the highly dynamic soil where oxygen concentrations vary dramatically.</p><p><strong>Importance: </strong>Bacteria use two-component signaling systems (TCSs) to respond to a multitude of environmental signals and subsequently regulate complex cellular physiology and behaviors. <i>Myxococcus xanthus</i> is a ubiquitous soil bacterium that encodes numerous two-component systems to respond to the conditions of its soil environment and coordinate multicellular behaviors such as coordinated motility, microbial predation, fruiting body development, and sporulation. To better understand how this bacterium uses a two-component system that has been linked to the sensing of oxygen concentrations, NmpRSTU, we determined the gene regulatory network of this system. We identified several genes regulated by NmpR that are likely important in oxygen utilization and for the <i>M. xanthus</i> response to varied oxygen concentrations in the dynamic soil environment.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0028024"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00280-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myxococcus xanthus has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in M. xanthus social motility. NmpRSTU was discovered through a screen that identified mutations in nmp genes that restored Type-IV pili-dependent motility to a nonmotile strain. The Nmp pathway begins with the SK NmpU, which is predicted to be active in the presence of oxygen. NmpU phosphorylates another SK, NmpS, a hybrid kinase containing an RR domain and a HisKA-CA domain. These two kinases work in a reciprocal fashion: when NmpU is active, NmpS is inactive, and vice versa. Finally, the phosphorelay culminates in NmpS phosphorylating the NtrC-like RR NmpR. To better understand the role of NmpRSTU in M. xanthus physiology, we determined the NmpR regulon by combining in silico predictions of the NmpR consensus binding sequence with in vitro electromobility shift assays (EMSAs) and in vivo transcriptional reporters. We identified several NmpR-dependent, upregulated genes likely to be important in oxygen utilization. Additionally, we demonstrate NmpRSTU plays a role in fruiting body development, suggesting a role for oxygen sensing in this behavior. We propose that NmpRSTU senses oxygen-limiting conditions, and NmpR upregulates genes associated with optimal utilization of that oxygen. This may be necessary for M. xanthus physiology and behaviors in the highly dynamic soil where oxygen concentrations vary dramatically.

Importance: Bacteria use two-component signaling systems (TCSs) to respond to a multitude of environmental signals and subsequently regulate complex cellular physiology and behaviors. Myxococcus xanthus is a ubiquitous soil bacterium that encodes numerous two-component systems to respond to the conditions of its soil environment and coordinate multicellular behaviors such as coordinated motility, microbial predation, fruiting body development, and sporulation. To better understand how this bacterium uses a two-component system that has been linked to the sensing of oxygen concentrations, NmpRSTU, we determined the gene regulatory network of this system. We identified several genes regulated by NmpR that are likely important in oxygen utilization and for the M. xanthus response to varied oxygen concentrations in the dynamic soil environment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信